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Introduction

• In U.S., transportation accounts for 35% 
of CO2 emissions [1] and 28% of energy 
consumption [2]
• Public transportation is responsible for 

21.1 million metric tons of CO2 
emissions [3]

2019 U.S. Carbon Dioxide Emissions by Source [2]

[1] EIA. 2019. U.S. Energy Information Administration: Use of energy explained – Energy 
use for transportation (2019). https://www.eia.gov/ energyexplained/use-of-
energy/transportation.php

[2] U.S. Environmental Protection Agency (2021). Inventory of U.S. Greenhouse Gas 
Emissions and Sinks: 1990-2019 (https://www.epa.gov/ghgemissions/overview-
greenhouse-gases#carbon-dioxide)

[3] EPA. 2020b. U.S. Transportation Sector Greenhouse Gas Emissions. 
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey= P100ZK4P.pdf

https://www.eia.gov/%20energyexplained/use-of-%20energy/transportation.php
https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=%20P100ZK4P.pdf


Introduction

Adopting EVs and HVs reduces greenhouse 
gas emissions and operational costs

Challenges

• A new EV costs approximately twice as much as 
a new ICEV vehicle ($1M, including charging 
infrastructure)

• Limited battery capacity and driving range
• Most agencies can only afford a mixed-fleet of 

vehicles

ICEV

HV

EV



Optimizing Transit Operations

Operational 
optimization

Vehicle to trip assignment

Paratransit scheduling

EV charging scheduling

On-demand microtransit

Vehicles

Cameras APC

Passengers

Passenger prediction

Energy prediction

Data feed integration
Weather, traffic, 
and road data

Transportation service Prediction models Our focus is on energy 
prediction models for 

ICEVs, HVs and EVs



The Energy Prediction Problem

• Traffic conditions
• Weather
• Roadway features
• Segment

Input Features

Prediction Models

Diesel (ICEV)

Hybrid (HV)

Electric (EV)

Target: emissions (CO2) 
or energy (kWh)

SEG 1

SEG 2

SE
G 

3

Bus Stop

Goal: predict energy along 
route segments (stretches 

of roadway between stops)

Prediction Pipeline

Note: Linear 
conversion between 
emissions (CO2) and 
energy (kWh) [1,2]

[1] EIA energy conversion calculator. https://www.eia.gov/energyexplained/units-
andcalculators/energy-conversion-calculators.php (2021)
[2] EPA greenhouse gases calculator. https://www.epa.gov/energy/greenhouse-
gasesequivalencies-calculator-calculations-and-references (2021)

https://www.eia.gov/energyexplained/units-andcalculators/energy-conversion-calculators.php
https://www.epa.gov/energy/greenhouse-gasesequivalencies-calculator-calculations-and-references


Real-world Operational Challenges

• Traffic conditions
• Weather
• Roadway features
• Segment

Input Features

Diesel (ICEV)

Hybrid (HV)

Electric (EV)

Target: emissions (CO2) 
or energy (kWh)

State-of-the-art [1]

Diesel (ICEV) Model

Hybrid (HV) Model

Electric (EV) Model

Vehicle-specific NN 
Models

1. Ayman, Afiya, et al. "Data-Driven Prediction and Optimization of Energy Use for Transit Fleets of 
Electric and ICE Vehicles", ACM Transactions of Internet Technology, 2020.

Insight: Training separate models for each type of 
vehicle ignores generalizable information that is not 

explicitly modeled in the feature space. 

https://scopelab.ai/files/aymantoit2020.pdf


Contributions

Transit agency operates 
many ICEVs, HVs and EVs

Transit agency has a 
significant variation in the 
number of vehicles from 

each class

Learn model from task with 
sufficient data and transfer the 
learned abstraction to improve 

accuracy for class with insufficient 
data

Improve accuracy of forecasting 
energy (emissions) prediction for all 

tasks

Multi-task Learning 
(MTL)

Inductive transfer learning 
(ITL)

Scenario Goal Approach



Preliminaries and Model Formulation

• Domain 𝒟
• Feature space 𝒳 and input samples {𝑥!, 𝑥", … } ∈ 𝒳
• Output space 𝒴 and output samples {𝑦!, 𝑦", … } ∈ 𝒴
• 𝑓 is a predictive function over 𝑦 ∈ 𝒴 conditional on 
𝑥 ∈ 𝒳
• Task 𝒯 = {𝒴, 𝑓 ⋅ }

ICEV

HV

EV

Three Domains: 𝒟!"#$, 𝒟%$, 𝒟#$



Output Space 

ICEV

HV EV

kWh/km Per Route

6 kWh/km 

0 kWh/km 

Goal is to learn tasks 𝒯#$ ≠ 𝒯%$ ≠ 𝒯!"#$
given 𝒟#$ = 𝒟%$ = 𝒟!"#$

• EVs have regenerative breaking (energy 
consumed can be negative), while HVs and 
ICEVs do not
• Each vehicle class responds differently to 

network conditions
• Therefore, 𝑃 𝑌#$ 𝑋#$ ≠ 𝑃 𝑌%$ 𝑋%$ ≠
𝑃 𝑌!"#$ 𝑋!"#$



Approach - MTL Model

• Case: transit agency operates many
ICEVs, HVs and EVs
• Goal: improve accuracy of forecasting 

energy (emissions) prediction for all 
tasks
• Method: hard parameter sharing 

(shared hidden layers) -> learn 
generalizable patterns between 
vehicle classes to improve learning
• Vehicle specific layers



Approach - ITL Model

• Case: transit agency has a significant 
variation in the number of vehicles from 
each class
• Goal: learn model from task with 

sufficient data and transfer the learned 
abstraction to improve accuracy for class 
with insufficient data
• Source domain: significant samples 

available for training
• Target domain: limited samples available 

for training



Data Collection

Data collected over a 6 months with our 
partner agency - Chattanooga Area 

Regional Transportation Agency (CARTA).



Data Sources

Data Source Description Features Frequency Scope

ViriCiti - ICEVs vehicle telemetry fuel, GPS 1 Hz 3 vehicles

ViriCiti - HVs vehicle telemetry fuel, GPS 1 Hz 4 vehicles

ViriCiti - EVs vehicle telemetry current, voltage, GPS 1 Hz 3 vehicles

Clever Devices automated 
vehicle location

trip ID, vehicle ID 0.1 Hz all vehicles

HERE traffic (per TMC) jam factor, current speed, free flow 
speed

0.016 Hz major 
roads, 
highways

DarkSky weather visibility, wind speed, precipitation 
intensity, humidity, temperature

0.003 Hz whole city

Static GTFS transit schedule routes, trip ID, stop sequences, stop 
locations, schedule times

static whole city

GIC - Elevation LiDAR elevation location, elevation static whole city

Trip Segments multiple sources length, time to travel, average speed, 
roadway type

static whole city



Challenges in Mapping Trajectories to Segments

Overlapping segments: Segments 1 
and 5 traverse the same section in 
opposite directions.

Intersecting segments: Vehicle 
locations near the intersection of 
segments 1 and 4 can lead to 
incorrect mapping. Stops not 
shown.

Spatial 
Challenges

Mapping of trajectory data to 
segments is noisy and 

computationally challenging 

GPS readings are noisy



Mapping Vehicle Trajectories to Routes

• Trajectory (𝑇): set of GPS coordinates from vehicle
• Route (𝑅): ordered set of route segments 
• Route segment (𝑆𝐸𝐺): road segment between two stops
• 𝑊 : # of lookahead segments
• 𝐵: Max distance between segment and vehicle GPS

Goal: map each location 𝑙# ∈ 𝑇
to a segment 𝑆𝐸𝐺 ∈ 𝑅

SEG 1

SEG 2

SE
G 

3

Bus Stop

Segments 
determined from 
static GTFS routes



Mapping Vehicle Trajectories to Routes

• Initalize 𝑇, 𝑅,𝑊, 𝐵
• Set index of current segment (𝑐 = 1)
• For each GPS point 𝑙& ∈ 𝑇 we consider the set 
{𝑆𝐸𝐺', … , 𝑆𝐸𝐺'()}.

• Map 𝑙& to nearest 𝑆𝐸𝐺 in {𝑆𝐸𝐺', … , 𝑆𝐸𝐺'()}.
• Update index of current segment

Short lookahead - alleviates duplicate 
matches from segments further away 

in the route and minimizes 
computational requirements

Intuition

SEG 1

SEG 2

SE
G 

3

Bus Stop



Data Cleaning and Join

1. Each trip is a trajectory. Trajectories are split between stops using the mapping 
procedure. Each sample is a portion of a trajectory between two stops.

2. ICEVs and HVs fuel consumed is in liters.
3. EVs provide SOC readings but the precision so too low. Therefore energy 

consumed is given by: 𝐸! = 𝐴! ∗ 𝑉!(𝑇𝑆! − 𝑇𝑆!"#)
1. 𝐸! , 𝐴! , 𝑉! are energy consumed (Joule), current (Ampere) and voltage (Volt) respectively.
2. 𝑇𝑆! is time (seconds) at timestep i. 
3. To get energy on a segment the energy consumed is accumulated for all locations on that 

segment. 
4. Weather features are taken from the closest weather station at the time in 

which the vehicle started traversing the segment. Traffic (jam factor, speed 
ratio) taken when vehicle starts traversing segment. 

5. List of input features are provided on slide 19.



Evaluation

• Investigation of covariates for energy (emission) prediction
• Hyperparameter tuning and baseline models
• MTL model evaluation
• ITL model evaluation



Covariates for Energy (emission) Prediction

ICEV HV EV

Average Speed -0.262 -0.134 -0.093

Segment Length 0.886 0.916 0.860

Time to Travel 0.865 0.838 0.752

Change in Elevation 0.539 0.505 0.523

Max Elevation Change 0.103 0.135 0.222

Speed Ratio 0.028 0.038 0.038

Jam Factor -0.016 -0.026 -0.015

Temperature -0.005 0.013 -0.037

Precipitation -0.005 -0.008 -0.003

Visibility 0.004 0.006 0.008

Wind Speed 0.011 0.004 -0.002

Humidity 0.001 -0.008 -0.009

Wind Gust 0.000 -0.002 -0.012

• ICEVs, HVs and EVs respond 
differently to some covariates
• Average speed
• Change in elevation
• Temperature

Pearson Correlation of input features with emissions

(a) Emissions (kg CO2) (b) Energy consumption (kWh)



Evaluation - Hyperparameter Tuning and Baseline Models

• Randomly select 43,022 samples from each vehicle 
class
• 80% of the samples for training and 20% for testing
• 10% of training samples used for evaluation
• Tested shared hidden layer widths of {200, 300, 400} 

and shared hidden layer depths of {3, 4, 5}
• Tested learning rates of {0.01, 0.005, 0.001, 0.0005, 

0.0001}
• Tested batch sizes of {64, 128, 256, 512}
• MSE loss function, ReLU activation, linear output 
• Adam optimizer

Hyperparameter Tuning

Baseline models: vehicle-specific neural networks



MTL Evaluation

Fig. Average MSE and MAE of MTL model compared to 
baseline on testing set. Prediction target: emissions (kg 
CO2)

• ICEVs: 8.6% (MSE) 6.4% (MAE)
• HVs: 17.0% (MSE) 9.0% (MAE)
• EVs: 7.0% (MSE) 4.0% (MAE)

Percent Improvement Over 
Baselines

• Baselines: vehicle-specific 
neural networks

• 80% train (10% used for 
evaluation) and 20% test

• 10 MTL models trained (30 total 
baseline, 10 in each class)

Experiment Setup



MTL Evaluation

Fig. Distribution of MTL and baseline model bias per 
sample for each vehicle class from bootstrap evaluation, 
30 bootstrap iterations. Prediction target: (a) emissions 
and (b) energy.

• ICEVs: 5.1% (Bias)
• HVs: 10.8% (Bias)
• EVs: 1.0% (Bias)

Mean Percent Improvement Over 
Baselines

• Baselines: vehicle-specific 
neural networks

• 30 datasets generated through 
bootstrapping

Experiment Setup



ITL Evaluation

• ITL model is trained on full dataset 
in the source vehicle class and is 
evaluated on the target vehicle 
class (source -> target)
• Improved forecasting accuracy for 

all target classes when ICEV and HV 
used as source
• Negative transfer EV -> ICEV

Fig. : ITL models compared to corresponding baselines. Average MSE 
compared to fraction of data samples used for training in the target 
vehicle class. Prediction target: emissions (kg CO2)



t-SNE Investigation of ITL Model

• t-SNE parameters: number of 
components=2, perplexity=10, 
initialization=PCA, number of 
samples=860 (2% of dataset)
• Fig 1: t-SNE on raw input 

features for each data sample 
from the source domain.
• Fig 2: t-SNE on the output of 

shared-hidden layers for each 
data sample from the target 
domain. 

Fig. 2

Fig. 1



t-SNE Investigation of ITL Model

• Fig 1 (a-c) all three plots on 
the raw input features are 
similar, collaborating that 
input features are similar 
across tasks
• Fig 2 (a-f) effectively 

discriminate the samples with 
high emissions and low 
emissions
• Fig 2 (g-i) EV source model 

shows poor discrimination, 
reflecting the negative transfer

Fig. 2

Fig. 1



t-SNE Investigation of ITL Model

• Fig 1 (a-c) all three plots on 
the raw input features are 
similar, collaborating that 
input features are similar 
across tasks
• Fig 2 (a-f) effectively 

discriminate the samples with 
high emissions and low 
emissions
• Fig 2 (g-i) EV source model 

shows poor discrimination, 
reflecting the negative transfer

Fig. 2

Fig. 1



t-SNE Investigation of ITL Model

• Fig 1 (a-c) all three plots on 
the raw input features are 
similar, collaborating that 
input features are similar 
across tasks
• Fig 2 (a-f) effectively 

discriminate the samples with 
high emissions and low 
emissions
• Fig 2 (g-i) EV source model 

shows poor discrimination, 
reflecting the negative 
transfer

Fig. 2

Fig. 1



Discussion and Conclusion

• We presented an MTL solution for the case when transit 
agency operates many ICEVs, HVs and EVs

• We presented an ITL solution for the case when transit 
agency has a significant variation in the number of 
vehicles from each class

Scenarios Addressed

• MTL improves prediction accuracy and reduces bias
• ITL is most effective when data is limited in target class
• EV energy (emissions) is harder to predict than HV and ICEV
• Negative transfer when EV is source and ICEV is target, 

though this situation rarely arises in practice

Key Findings


