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1 Introduction

Public transit enables people to access employment, healthcare, education, and community resources, which allows
members of communities to interact with one another. As a result, this aids the growth and expansion of businesses [1].
Public transit is not only important for individuals; it plays two essential roles in ensuring justice to society. First, it
distributes social and economic benefits, and second, it links the capabilities of the people, thereby enhancing what
people can accomplish as a society [2, 3]. While access to transit infrastructure is vital in general, it is a more
critical need for some people than others, i.e., a section of the population depends on public transit for their basic
requirements (e.g., access to employment) more so than others [4]. As a result, it is imperative that policymakers
design public transit infrastructure equitably, i.e., the design process must explicitly take into account the diverse
requirements (and dependencies) of people who use transit. A fundamental problem in strategic transit design is line
planning, which seeks to design transit lines and frequencies that serve the given travel demand [5], either at minimum
cost or subject to a budget constraint. While the problem has been extensively studied, equity considerations are
often absent from traditional line planning literature. This is somewhat counter-intuitive, as it is well-understood that
equitable transit is imminently desirable [6, 7, 2, 3]. Moreover, it is not easy to precisely define what equity means
in this context; for example, Rock et al. [6] present a comprehensive overview of different philosophical trains of
thought affecting the design of public transportation and point out that the different notions of equity naturally lead
to different outcomes. This paper lays some necessary groundwork to achieve equitable line planning. We introduce
a mathematical programming formulation for transit network design with explicit equity considerations (with respect
to a measure of level-of-service). Importantly, our formulation is linear, which is advantageous from an integer
programming point of view. We believe our model is a stepping stone to designing equitable transit networks.

2 Models for Equitable Transit Networks

Let G = (V,A) be a strongly-connected directed graph representing the underlying network on which transit has to
be installed. Let |V | = n and |A| = m. There are lengths ℓ : A → R≥0, costs c : A → R≥0, and a budget B ∈ R≥0

which may not be exceeded. In this preliminary version of our work, we assume arcs are uncapacitated. The solution
space consists of subsets AR ⊆ A ensuring each node u ∈ V has equal in and out degree (so that transit routes are
self-rebalancing) and for which

∑

a∈AR
ca ≤ B.
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Let D = {(o, d) ∈ V × V : u 6= v}. For each origin-destination pair (o, d) ∈ D, let bod ∈ R≥0 represent the number
of people who want to travel from o to d (e.g., in a morning commute pattern). Similarly, let pod ∈ (0, 1) be the

priority of serving a passenger traveling from o to d (e.g., need-based). We refer to b = (bod)(o,d)∈D ∈ N
n(n−1) and

p = (pod)(o,d)∈D ∈ N
n(n−1) as the travel demand profile and priority profile, respectively, and estimate them from

data (see Section 3).

A social welfare function reflects aggregate level of service. To this end, we define level of service not as a binary
quantity—givenAR ⊆ A and an origin-destination pair (o, d), is it possible to travel from o to d using only the arcs in
AR?—but as a “smoother” quantity—given AR ⊆ A and an origin-destination pair (o, d), how “good” is the travel
from o to d using only the arcs in AR? Here, “good” is with respect to level of service offered by the alternative: the
use of personal vehicles.

Given (o, d) ∈ D, let ℓ∗od ∈ R≥0 denote shortest path distance (with respect to ℓ) from o to d in A. Similarly, let

ℓod(AR) ∈ R≥0 denote shortest path distance from o to d in AR and note that, depending on AR, it may be that
ℓod(AR) = ∞. For example, this holds if AR = ∅. In any case, note that ℓod(AR) ≥ ℓ∗od for all AR ⊆ A and
(o, d) ∈ D. Let α ∈ R≥1 be a model parameter reflecting the extent to which passengers tolerate detours; as a
multiplicative factor of the shortest path distance ℓ∗od. Given AR, we assume each passenger who wants to travel
from o to d reaps unit utility if ℓod(AR) = ℓ∗od, zero utility if ℓod(AR) ≥ α · ℓ∗od, and otherwise reaps utility that
interpolates linearly between the points (ℓ∗od, 1) and (α · ℓ∗od, 0). Formally, for each (o, d) ∈ D we have a utility

function uod : 2A → [0, 1] where

uod(AR) :=

{

− ℓod(AR)
ℓ∗
od

·(α−1) +
α

(α−1) , if ℓ∗od ≤ ℓod(AR) < α · ℓ∗od,

0, otherwise.
(1)

Given AR ⊆ A, let u(AR) = (uod(AR))(o,d)∈D ∈ [0, 1]n(n−1) be the utility profile. Then, a social welfare function

w : [0, 1]n(n−1) → R≥0 takes the utility profile u(AR) (and implicitly the travel demand profile b and a priority
profile p) to compute some aggregate measure of welfare.

We now present a mixed-integer linear programming model describing the solution space and linearizing Equation (1).

We have installation variables x ∈ {0, 1}m indicating the installed network, connectivity variables y ∈ {0, 1}n(n−1)

indicating the origin-destination pairs to be connected, flow variables f ∈ {0, 1}m×n(n−1) delineating the paths

through which said connectivity takes place, length variables ℓ ∈ R
n(n−1)
≥0 recovering the lengths of said paths, and

utility variables u ∈ R
n(n−1)
≥0 quantifying the level of service they offer. We maximize social welfare functions over

the region1

P =



























































x ∈ {0, 1}m

y ∈ {0, 1}n(n−1)
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ℓ ∈ R
n(n−1)
≥0

u ∈ [0, 1]n(n−1)

:

∑

a∈A

caxa ≤ B,
∑

a∈δ+(u)

xa −
∑

a∈δ−(u)

xa = 0, ∀u ∈ V

∑

a∈δ+(u)

fod
a −

∑

a∈δ−(u)

fod
a = yod ·

(

1{u=o} − 1{u=d}

)

, ∀(o, d) ∈ D, u ∈ V

fod
a ≤ xa, ∀(o, d) ∈ D, a ∈ A

ℓod =
∑

a∈A

ℓa · fod
a , ∀(o, d) ∈ D

ℓod ≤ (α · ℓ∗od) · yod, ∀(o, d) ∈ D
uod = − ℓod

ℓ∗
od
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α
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α

α−1 · (1− yod) , ∀(o, d) ∈ D
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The first four sets of constraints defining P correspond to an uncapacitated multi-commodity flow formulation. The
constraints ℓod =

∑

a∈A ℓa · fod
a for all (o, d) recover the lengths of the paths through which origin-destination pairs

are connected, whereas the constraints ℓod ≤ (α · ℓ∗od) · yod for all (o, d) ensure said lengths are “tolerable.” The last
set of constraints implement (1). The reader might observe differences between (1) and how it is implemented in P ,
and that the constraints ℓod ≤ (α · ℓ∗od) · yod and ℓod =

∑

a∈A ℓa · fod
a for all (o, d) might lead to the infeasibility

(under P ) of solutions that are otherwise admissible under the abstract model. This is by design, as we aim to model
Equation (1) with only linear constraints. We find that P is a correct formulation.

Theorem 1 Let w : [0, 1]n(n−1) → R≥0 be monotonic increasing. Then, AR ⊆ A is a solution maximizing w(u(AR))
if and only if there is (x, y, f, ℓ, u) ∈ P maximizing w(u) with u = u(AR).

For any origin-destination pair (o, d) ∈ D, we say the priority-adjusted utility of a passenger traveling from o to
d is pod · uod ∈ [0, 1). Then, if bod ∈ N is the number of people who want to travel from o to d, their total

1For each u ∈ V , let δ+(u) and δ
−(u) denote the outgoing and incoming arcs of u in G, respectively.
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priority-adjusted utility is bod · (pod · uod) ∈ [0, bod). A priority-adjusted utilitarian social welfare function com-
putes the sum of priority-adjusted utilities. Therefore, we define the maximum priority-adjusted ridership problem as
max(x,y,f,ℓ,u)∈P

∑

(o,d)∈D bod ·(pod ·uod). (This problem can be easily linearized). Similarly, we define the maximum

priority-adjusted coverage problem as max(x,y,f,ℓ,u)∈P min(o,d)∈D(1−pod) ·uod. This leads to a family of maximum
priority-adjusted trade-off problems

max
(x,y,f,ℓ,u)∈P

γ ·
∑

(o,d)∈D

bod · (pod · uod) + (1− γ) · min
(o,d)∈D

(1− pod) · uod, (2)

where γ ∈ (0, 1]. In this way, the parameter γ captures the priorities of the transit network planner.

3 Preliminary Experiments and Future Work
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Figure 1: Average utility for Utilitarian and MaxMin objectives with α = 2, binned into 5 priority groups.

Our implementation uses Julia 1.7.3, JuMP 1.1.1, and Gurobi 9.5.1 [8].

The geographical area under consideration is Chattanooga, Tennessee, Hamilton County. The Census Tracts served by
Chattanooga Area Regional Transportation Authority (CARTA) correspond to the number of nodes in the underlying
network. The edges represent the shortest major roadway that connects neighboring Census Tracts, each having a
cost equivalent to the roadway’s length (in kilometers). The origin-destination pairs are from Longitudinal Employer-
Household Dynamics Origin-Destination Employment Statistics (LODES 7) [9]. Priority scores are calculated using
the origin’s average household income and % of private car ownership. These statistics are gathered from Census
Bureau Tables, the American Community Survey Data (ACS) [10] [11].

For each priority group, average utility is calculated ex-post to quantify level-of-service. A budget of 1 represents the
total cost over all edges of the graph. A budget of 0.95 represents the required minimum budget to serve all pairs by
their shortest path. Figures 1a,c show that the average utility for the priority group most in need (Group 1), is higher
than in Figures 1b,d. This demonstrates the advantage of implementing heterogeneous priorities within the models
through the utility function.

Future work will consist of applying our approach to different cities and experimenting with different priority distribu-
tions. More realistic models will be derived, in particular enhancing our model with more realistic features that take it
from our bare-bones network design formulation toward a full-blown line planning formulation.
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