Rolling Horizon based Temporal Decomposition for the Offline Pickup and Delivery Problem with Time Windows

Youngseo Kim¹, Danushka Edirimanna¹, Michael Wilbur², Philip Pugliese³, Aron Laszka⁴, Abhishek Dubey², Samitha Samaranayake¹

 1 Cornell University, 2 Vanderbilt University, 3 Chattanooga Area Regional Transportation Authority, 4 Pennsylvania State University

December 29, 2022

1 / 15

Kim et al. (2023) December 29, 2022

Background

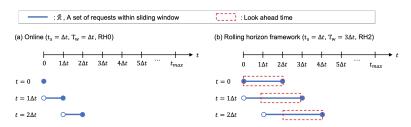
Pickup and delivery problem with time windows (PDPTW)

- PDPTW problem is proven to be very challenging computationally, i.e., NP-hard.
- Due to the complexity of the problem, practical problem instances can be solved only via heuristics.
- One common strategy is problem decomposition, i.e., the reduction of a large-scale problem into a collection of smaller sub-problems.

Research Objective

Rolling Horizon Framework

- We utilize a state-of-the-art online solver along with the rolling horizon optimization framework.
- A sliding window moves forward in time after each iteration, and keeps some overlap with the previous window.
- The overlapped window allows the parts of the route to be rescheduled

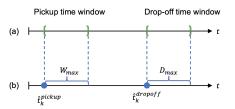


Problem Definition

Offline PDPTW

Given:

- Network, Requests $r_k \in \mathcal{R}$, Vehicles $v_j \in \mathcal{V}$
- Maximum waiting time W_{max} and maximum delay time D_{max}



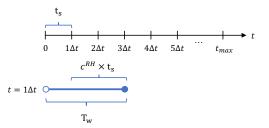
Find:

• $(v_j, [r_1, ..., r_k]) \in Assignments$, a set of tuples of a vehicle and a list of scheduled visits by order

Problem Definition

Hyperparameters

- Window size T_w and step size t_s .
- Rolling horizon factor c^{RH} is a factor for look ahead time.



 Adjusting window size and step size provides a better trade-off between solution quality and compute time.

Methodology

State-of-the-art Online Solver

Challenges

- It is important to introduce a high performance PDPTW solver for subproblems.
- The subproblem is still NP-hard.

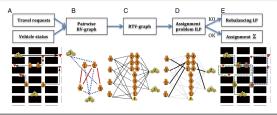
Techniques to solve the problem in polynomial time

- Decomposition: decoupling the NP-hard problem into routing and matching problems using RTV graph
- Pruning: feasibility constraints significantly reducing eligible matching pairs
- **Heuristics**: exhaustive search up to four passengers and insertion algorithm if more than four

Methodology

State-of-the-art Online Solver

Request Trip Vehicle (RTV) graph [AMSW+17]



Integer Linear Programming (ILP)

$$\underset{\epsilon_{ij},\chi_k}{\operatorname{argmin}} \sum_{\{ij:\epsilon_{ii}\in\mathcal{E}_{TV}\}} c_{ij}\epsilon_{ij} + \sum_{k\in\mathcal{R}} c_k\chi_k \tag{1}$$

s.t.
$$\sum_{\{i:T_i \in \mathcal{T}\}} \epsilon_{ij} \leq 1 \qquad , \forall v_j \in \mathcal{V} \qquad (2)$$

$$\sum_{\{i:T_i \in \mathcal{T}\}} \sum_{\{j:V_j \in \mathcal{V}\}} \epsilon_{ij} + \chi_k = 1 \qquad , \forall r_k \in \mathcal{R}$$
 (3)

Experimental design

Benchmark solvers

Google OR-Tools [PF22]

- A well-established, modern, and publicly available VRP solver developed by Google.
- Guided local search (GLS) which is known as the best performing setting for the OR-Tools PDPTW solver.

A modified Lin-Kernighan-Helsgaun heuristic (LKH3) [Hel17]

- LKH3 is the state-of-the-art solver to solve TSP and its variants.
- Among 322 PDPTW benchmark instances, LKH3 finds equal to or better than the best-known solutions in 319 instances.

Experimental design

Parameter settings

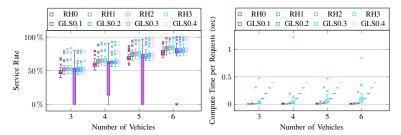
Table 1: Parameter settings for real-world dataset

Parameter	Values		
Vehicle capacity	8		
Maximum waiting time	30 (min)		
Maximum delay time	30 (min)		
Dwell time	5 (min)		

Table 2: Parameter for Chattanooga and New York City dataset

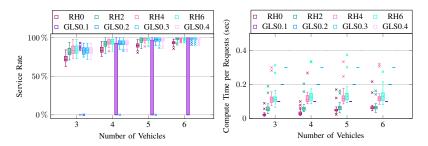
Parameter	Chattanooga	NYC (small)	NYC (large)			
Data	Full data	1% sampled	20% sampled			
Fleet size (M)	3, 4, 5, 6	3, 4, 5, 6	40			
Step size	15 (min)	5 (min)	5 (min)			
RH factor	RH factor 0,1,2,3		0,1,2			
←□ → ←□ → ←□ → ←□ → ←□ → ←□ → ←□ → ←□ →						

Chattanooga



RH* denotes the solutions with the * indicating the rolling horizon factor.
GLS* denotes the guided local search solutions with the * indicating time limit.
Number of requests: an average of 172 with standard deviation of 33

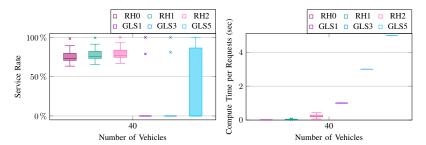
NYC (small)



Number of requests: an average of 129 with standard deviation of 29

• Performance of the RH is as good as that of GLS.

NYC (large)



Number of requests: an average of 2587 with standard deviation of 570 RH2 achieves a service rate of 79.0% in average and 100% maximum service rate, within 1 second per request.

GLS1 and 3 cannot get any feasible solution in 29 among 31 instances.

• The performance of GLS is insufficient in practice because operators need to obtain a schedule for the next day within a couple of hours.

4 □ > 4 □ > 4 ≡ > 4

Benchmark instance

Instance		LKH3 Rolling horizon Framework					Gap (%)		
	VMT ^a	Compute time ^b	Compute time ^b		Service rate (%)		VMT ^a		
			$T_w = 5$	$T_{w} = 10$	$T_w = 5$	$T_{w} = 10$	$T_w = 5$	$T_{w} = 10$	
lc101	997	12.05	0.42	0.44	100	100	1095	1127	13.00
lc105	1011	15.92	0.50	0.50	98	100	1116	1140	12.73
lc106	1032	22.81	0.49	0.50	100	100	1172	1163	12.69
lc107	1021	18.51	0.49	0.60	98.03	100	1165	1085	6.23
lc108	1030	18.81	0.50	0.52	96.15	100	1209	1120	8.74
lc201	1779	50.85	0.39	0.40	100	100	1981	2021	13.57

Table 3: Comparison of LKH3 and Rolling Horizon Framework

^a Abbreviation for vehicle miles traveled. The unit of the compute time is second.

Conclusion

- 1. In this paper, we introduce a new temporal decomposition scheme to solve the PDPTW.
- 2. Rolling horizon framework provides better trade-off between solution quality and compute time.
- 3. We showcase the performance and scalability of the rolling horizon framework in different networks with different demand profiles.

References I

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus

On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences, 114(3):462–467, 2017.

Keld Helsgaun.

Lkh3.

http://webhotel4.ruc.dk/~keld/research/LKH-3/, 2017.

[Online; accessed 15-Dec-2022].

Laurent Perron and Vincent Furnon.

Or-tools v9.4.

https://developers.google.com/optimization/routing/vrp, 2022.

[Online; accessed 26-Oct-2022].