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Background

Pickup and delivery problem with time windows (PDPTW)
e PDPTW problem is proven to be very challenging computationally,
i.e., NP-hard.
e Due to the complexity of the problem, practical problem instances

can be solved only via heuristics.

e One common strategy is problem decomposition, i.e., the reduction
of a large-scale problem into a collection of smaller sub-problems.
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Research Objective

Rolling Horizon Framework

e We utilize a state-of-the-art online solver along with the rolling
horizon optimization framework.
e A sliding window moves forward in time after each iteration, and

keeps some overlap with the previous window.

e The overlapped window allows the parts of the route to be
rescheduled
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Problem Definition

Offline PDPTW

Given:
e Network, Requests r, € R, Vehicles v; € V

e Maximum waiting time Wi and maximum delay time Dpax

Pickup time window Drop-off time window
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Find:

e (vj,[r,...,r]) € Assignments, a set of tuples of a vehicle and a list of

scheduled visits by order
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Problem Definition

Hyperparameters
e Window size T,, and step size ts.

e Rolling horizon factor ¢ is a factor for look ahead time.

e Adjusting window size and step size provides a better trade-off

between solution quality and compute time.
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Methodology

State-of-the-art Online Solver

Challenges
e It is important to introduce a high performance PDPTW solver for
subproblems.

e The subproblem is still NP-hard.

Techniques to solve the problem in polynomial time
e Decomposition: decoupling the NP-hard problem into routing and
matching problems using RTV graph
e Pruning: feasibility constraints significantly reducing eligible
matching pairs
e Heuristics: exhaustive search up to four passengers and insertion
algorithm if more than four
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Methodology

State-of-the-art Online Solver

Request Trip Vehicle (RTV) graph [AMSW*17]
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Experimental design

Benchmark solvers

Google OR-Tools [PF22]
e A well-established, modern, and publicly available VRP solver
developed by Google.
e Guided local search (GLS) which is known as the best performing
setting for the OR-Tools PDPTW solver.

A modified Lin-Kernighan-Helsgaun heuristic (LKH3) [Hel17]

e LKH3 is the state-of-the-art solver to solve TSP and its variants.

e Among 322 PDPTW benchmark instances, LKH3 finds equal to or
better than the best-known solutions in 319 instances.
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Experimental design

Parameter settings

Table 1: Parameter settings for real-world dataset

Parameter Values
Vehicle capacity 8
Maximum waiting time | 30 (min)
Maximum delay time 30 (min)
Dwell time 5 (min)

Table 2: Parameter for Chattanooga and New York City dataset

Parameter Chattanooga | NYC (small) | NYC (large)
Data Full data 1% sampled 20% sampled
Fleet size (M) | 3, 4,5, 6 3,4,5,6 40

Step size 15 (min) 5 (min) 5 (min)

RH factor 0,1,2,3 0,2,4,6 0,1,2
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Results

Chattanooga
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RH* denotes the solutions with the * indicating the rolling horizon factor.
GLS* denotes the guided local search solutions with the * indicating time limit.
Number of requests: an average of 172 with standard deviation of 33
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Results
NYC (small)
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Number of requests: an average of 129 with standard deviation of 29

e Performance of the RH is as good as that of GLS.
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Results

NYC (large)
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Number of requests: an average of 2587 with standard deviation of 570

RH2 achieves a service rate of 79.0% in average and 100% maximum service rate,
within 1 second per request.

GLS1 and 3 cannot get any feasible solution in 29 among 31 instances.

e The performance of GLS is insufficient in practice because operators need
to obtain a schedule for the next day within a couple of hours.
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Results

Benchmark instance

Instance LKH3 Rolling horizon Framework Gap (%)
VMT? | Compute time® |  Compute time® Service rate (%) VMT?
Tw=5|Ty=10|T,=5|T,=10|T,=5|T,=10

Ic101 997 12.05 0.42 0.44 100 100 1095 1127 13.00
Ic105 1011 | 15.92 0.50 0.50 98 100 1116 1140 12.73
1c106 1032 | 22.81 0.49 0.50 100 100 1172 1163 12.69
1c107 1021 | 18.51 0.49 0.60 98.03 100 1165 1085 6.23
Ic108 1030 | 18.81 0.50 0.52 96.15 100 1209 1120 8.74
Ic201 1779 | 50.85 0.39 0.40 100 100 1981 2021 13.57

Table 3: Comparison of LKH3 and Rolling Horizon Framework

2 Abbreviation for vehicle miles traveled. The unit of the compute time is second.
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Conclusion

1. In this paper, we introduce a new temporal decomposition scheme
to solve the PDPTW.

2. Rolling horizon framework provides better trade-off between solution

quality and compute time.

3. We showcase the performance and scalability of the rolling horizon
framework in different networks with different demand profiles.
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