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Executive Summary
Public bus transit services in the U.S. are responsible for at least 19.7 million metric tons of

CO2 emission annually. Electric vehicles (EVs) can have a much lower environmental impact than
comparable internal combustion engine vehicles (ICEVs), especially in urban areas. Unfortunately,
EVs are also much more expensive than ICEVs. As a result, many public transit agencies can
afford only mixed fleets of transit vehicles, consisting of EVs, hybrids (HEVs), and ICEVs. Transit
agencies that operate such mixed fleets of vehicles face a challenging optimization problem: these
agencies need to decide which vehicles are assigned to serving which transit trips. Since the
advantage of EVs over ICEVs varies depending on the route and time of day (e.g., the benefit of
EVs is higher in slower traffic with frequent stops and lower on highways), the assignment can
have a significant effect on energy use and, hence, environmental impact.

Through this project, we have developed reference data about energy collections and constructed
a set of machine learning models that can accurately predict the energy consumption for the whole
fleet at the level of each trip. We have used these models to develop a scheduling and assignment
strategy that can rotate the different vehicle types across the transit agencies’ routes. The optimiza-
tion algorithm ensures that the vehicles are matched to trips considering weather patterns, expected
congestion, and road gradients to minimize the overall energy usage. We list the key observations
from our project for other practitioners below. Details are available in the report, and the list of
source code and our publications are included in the appendix.

1. We have demonstrated the feasibility of collecting, merging and analyzing large volumes
of high-resolution real-world telemetry data from a mixed vehicle fleet. To mitigate the
inherent noise of the recorded GPS points, the team developed an algorithm that filters data
and maps the points onto a street. The algorithm considers previous and subsequent location
measurements and different characteristics of nearby streets to determine how likely the
vehicle travels on them. Then, the team segmented the time series into disjoint contiguous
samples based on adjacent road segments and repeated the outlier detection and removal.
For each data point, the team added features corresponding to elevation changes within the
samples, weather features, such as temperature, and traffic data, such as speed ratio between
actual speed and free-flow speed.

2. We have developed two forms of machine learning models that be used to understand and
analyze the energy operations of a mixed vehicle transit fleet. The micro prediction model
provides estimates of instantaneous energy prediction for all types of buses (diesel, hybrid,
and electric). Such a model is important in evaluating the energy impacts of real-time bus op-
eration strategies, but it is challenging due to diversified driving cycles of transit buses. The
model can help the drivers understand the impact of their driving behaviors and short-term
congestions. The macro prediction models estimate average energy consumption across the
whole trip considering the features: distance traveled, various road-type features, elevation
change, day of the week, time of day, various weather features (temperature, humidity, etc.),
and traffic features (speed ratio and jam factor)

3. We have demonstrated that it is possible to transfer the machine learning models we have de-
veloped in this project to other teams and cities by using inductive transfer learning. We also
showed that the performance of the macro energy prediction models can be improved using
a multi-task learning approach where the learning parameters are shared between the mod-
els being developed for different vehicle types. The advantage of this approach is improved
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learning performance as the models can exploit common spatio-temporal and environmental
characteristics.

4. Finally, we have developed trip and vehicle assignment and scheduling algorithms that use
the energy prediction models and develop a trip to vehicle type (diesel, electric, hybrid)
assignment for the whole operation to reduce overall emissions and cost. We have shown
through simulations that the proposed algorithms can save $48,910 in energy costs and 175
metric tons of CO2 emission annually for CARTA.

1 Project Overview

Figure 1: This project builds a high-resolution
system-level data capture and analysis framework for
transit operations that enables CARTA to identify en-
ergy bottlenecks and accurately predict energy costs
of all operations. The captured datasets contain real-
time transit information about engine idling status,
engine temperature, engine speed, throttle, vehicle
speed, fuel level, and road gradient.

Transportation accounts for 28% of the to-
tal energy use in the U.S. [1]. It is responsible
for immense environmental impact, including
urban air pollution and greenhouse gas emis-
sions, and may pose a severe threat to energy
security. Switching from personal vehicles to
public transit systems can significantly reduce
energy use and environmental impact. How-
ever, even public transit systems require sub-
stantial amounts of energy; for example, pub-
lic bus transit services in the U.S. are respon-
sible for at least 19.7 million metric tons of
CO2 emission annually [2]. Electric vehicles
(EVs) can have a much lower environmental
impact than comparable internal combustion
engine vehicles (ICEVs), especially in urban
areas. Unfortunately, EVs are also much more
expensive than ICEVs (typically, diesel tran-
sit buses cost less than $500K, while electric
ones cost more than $700K, or close to around
$1M with charging infrastructure [3]). As a
result, many public transit agencies can afford
only mixed fleets of transit vehicles, consisting
of EVs, hybrids (HEVs), and ICEVs. Transit
agencies that operate such mixed fleets of vehicles face a challenging optimization problem: these
agencies need to decide which vehicles are assigned to serving which transit trips. Since the ad-
vantage of EVs over ICEVs varies depending on the route and time of day (e.g., the benefit of EVs
is higher in slower traffic with frequent stops and lower on highways), the assignment can have a
significant effect on energy use and, hence, environmental impact.

This project aimed to enable transit agencies like the Chattanooga Area Regional Transportation
Authority (CARTA) to perform this optimization strategically and systemically. We have devel-
oped novel data architectures to collect, process, and analyze high frequency sensor telemetry data,
containing information about engine idling status, engine temperature, engine speed, throttle, ve-
hicle speed, GPS position, fuel usage (diesel vehicles), and state of charge (electrical vehicles)
from all vehicles in the fleet of the transit agency. We combine these datasets with road gradient,
traffic congestion, current events in the city, and braking and acceleration patterns. These high-
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Table 1: Overview of Datasets

Data Source Frequency Scope Features
Diesel Vehicles ViriCiti & 1 Hz 3 vehicles for 244 days GPS location, fuel-level, fuel rate,
(2014 Gillig Phantom CARTA (veh. IDs: 147, 149, 150; odometer
diesel buses) 2019-8-1 to 2020-10-31)
Electric Vehicles ViriCiti & 1 Hz 3 vehicles for 244 days GPS location, charging status,
(2016 BYD K9S 35-foot CARTA (veh. IDs: 751, 752, 753; battery current, battery voltage,
battery-electric buses) 2019-8-1 to 2020-10-31) battery state of charge, odometer
Traffic HERE [4] 1 Hz TMC segments for major TMC ID, confidence of reading,

roads in Chattanooga unconstrained speed, free-flow
speed, jam factor

Weather DarkSky [5] 0.1 Hz Chattanooga region location, temperature, wind
speed, precipitation, humidity,
visibility, apparent temperature

Elevation TN GIC [6] static Chattanooga region location, elevation

dimensional datasets enable us to train accurate data-driven predictors of energy consumption for
various routes and schedules using deep neural networks. After that, we developed optimization
procedures to generate trip rosters that reduce the overall energy consumption. An essential aspect
of the project is the focus on the explainability of results. For that purpose, we build publicly ac-
cessible data dashboards and simulation engines to show the approach’s effectiveness. Our future
work includes the design of experiments to showcase the approach’s effectiveness in practice on
the CARTA fleet. Our overall process is summarized in Fig. 1. We describe the specific activities
of the project in the following sections.

2 Data
We first describe the data we have collected and the framework that we have designed as part

of the project to ensure that other transit agencies can replicate our effort. Table 1 provides an
overview of our data sources.

To collect data from CARTA’s fleet of vehicles, we partnered with ViriCiti, a company that offers
sensor devices and an online platform to support transit operators with real-time insight into their
fleets. ViriCiti has installed sensors on CARTA’s mixed fleet of three electric, forty-one diesel,
and six hybrid buses, and it has been collecting data continuously at 1-second (or shorter) intervals
since installation. For each vehicle, we obtain time-series data from ViriCiti, which includes a
series of timestamps and vehicle locations based on GPS. For electric buses, we also have features
such as battery current in ampere (A), battery voltage (V ), battery state of charge, and charging
cable status. We include fuel level and the total amount of fuel used over time in gallons for diesel
buses. In total, we have already obtained around 32.3 million data points for electric buses and
29.8 million data points for diesel buses (Table 1). Fuel data is recorded less frequently; hence,
there are fewer data points for diesel buses.

In addition, we collect static GIS elevation data from the Tennessee Geographic Information
Council [6]. From this source, we download high-resolution digital elevation models (DEMs),
derived from LIDAR elevation imaging, with a vertical accuracy of approximately 10 cm [7].
We join the DEMs for Chattanooga into a single DEM file, which we then use to determine the
elevation of any location within the geographical region of our project

We also collect weather data from multiple weather stations in Chattanooga at 5-minute intervals
using the DarkSky API [5]. This data includes real-time temperature, humidity, air pressure, wind
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speed, direction, and precipitation. In addition, we collect traffic data at 1-minute intervals using
the HERE API [4], which provides speed recordings for segments of major roads, which provides
data in timestamped speed recordings from selected streets. Every road segment is identified by a
unique Traffic Message Channel identifier (TMC ID) [8]. Each TMC ID is also associated with a
list of latitude and longitude coordinates, which describe the geometry of the road segment.

Given the volume and the rate of the data being collected, we had to design a new data ar-
chitecture for the project. The purpose of this architecture is to store the data streams in a way
that provides easy access for offline model training and updates and real-time access for system
monitoring prediction. This architecture consists of a publish-subscribe cluster implemented with
Apache Pulsar [9], which stores topic-labeled sensor streams, and a MongoDB database back-end.
An overview of the data architecture is provided in Fig. 2.

Figure 2: HD-EMMA data architecture overview.

This architecture solves two challenges. The
first challenge is the persistent storage of the
high-velocity, high-volume data streams. In
this study, the real-time data sources—ViriCiti,
HERE, and DarkSky—produce around 100 GiB
of data per month. Therefore, we choose a
cloud-based design to allow for fast horizontal
scalability of the system. The second concern is
that the data itself is highly unstructured and ir-
regular as the sources produce data at different
rates. Therefore, we stream each data source to a topic-based publish-subscribe (pub-sub) layer
that persistently stores each data stream as a separate topic. The pub-sub system consists of a
single Apache Pulsar [9] cluster running on VMware [10] virtual machines hosted at Vanderbilt
University.

We used a three-tiered naming convention for topic labeling. The first tier represents the name of
the data tenant, and all authentication and access is managed at this level. The second tier is the data
category, i.e., vehicle telemetry, traffic, weather, etc. The third tier is the topic name, representing
the data source or provider, such as ViriCiti, HERE, or DarkSky. For ViriCiti vehicle-telemetry
data, the fleet name is appended to the topic name to separate electric, diesel, and hybrid vehicles.
The tenant, category, and topic names together form a topic, which downstream applications can
use to access the data streams. We persistently store all messages on each topic in an append-only
ledger. Therefore, the topic can be used to read data in near real-time or to playback previous
data streams to synchronize new downstream applications. All replication is handled at the ledger
level, allowing downstream storage and applications to adapt and expand without concern for data
resiliency.

3 Machine Learning Models
The data that we collect helps us to analyze the energy consumption of the fleet and to under-

stand how environmental factors, traffic congestion, and road elevation affect energy consumption
(Fig. 3b and Fig. 3a). This analysis is then used to train machine learning models that can predict
the energy consumption for any day in the future. Finally, these predictions are used to configure
the optimization routines.
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(a) Energy use of electric fixed-route vehicles (b) Energy use of diesel fixed-route vehicles

Figure 3: Average energy used in kWh/mile by trip and by the time of day for (a) electric and (b) diesel fixed-route
transit vehicles. Scale for diesel is between 5-10 KWh/mile; scale for electric is between 0.7-3 KWh/mile. The
variance shows that there are specific trips that are more energy efficient with electric vehicles than others. Further,
there are specific routes like 21-inbound where using an EV will have a higher impact than other routes. All of these
differences factor into the optimization problem.

3.1 Macro Energy Predictors
The first machine learning model that we built from the collected data is the macro energy con-

sumption estimator, which can analyze and predict energy consumption for each route. To con-
struct the macro-level energy predictor, the team used vehicle telemetry data from the ViriCiti
DataHub. For EVs, the team collected the following features: timestamp, GPS-based position,
battery current (A), battery voltage (V), battery state of charge (%), and charging cable status (0 or
1). For diesel and hybrid vehicles, instead of battery data, the team collected fuel usage in gallons.

Our team had to perform several steps to process the time-series data recorded from the vehicles
by cleaning them, generating samples with a fixed-dimension feature space, and incorporating
data from other sources, including traffic and weather data. First, the team removed all data points
recorded when the vehicle was in the garage or was charging (for EVs). Next, the team calculated
energy consumption by integrating the product of the measured current and voltage values and
verified that these consumption values coincided with changes in the state of charge. For diesel
and hybrid vehicles, the team performed similar steps with the fuel used.

To mitigate the inherent noise of the recorded GPS points, the team developed an algorithm that
filters data and maps the points onto a street. The algorithm considers previous and subsequent
location measurements and different characteristics of nearby streets to determine how likely the
vehicle travels on them. Then, the team segmented the time series into disjoint contiguous samples
based on adjacent road segments and repeated the outlier detection and removal. For each data
point, the team added features corresponding to elevation changes within the samples, weather
features, such as temperature, and traffic data, such as speed ratio between actual speed and free-
flow speed. For each type of vehicle, the team created training and test sets by dividing samples
randomly.

The team applied three different machine-learning models for predicting energy consumption:
artificial neural network, linear regression, and decision tree regression. These models used the fol-
lowing features: distance traveled, various road-type features, elevation change, day of the week,
time of day, various weather features (temperature, humidity, etc.), and traffic features (speed ratio
and jam factor). The performance of these approaches was compared based on their mean pre-
diction errors for the test datasets. We ultimately chose neural networks because of their superior
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Figure 4: Mean squared error (MSE) of macro prediction models for diesel vehicles. We compare artificial
neural networks (ANN), decision tree regression (DT), and linear regression (LR). Lower values are better.
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Figure 5: Mean squared error (MSE) of macro prediction models (ANN, DT, and LR) for electric vehicles.
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Figure 6: Mean squared error for energy prediction with various sets of features. Note that electric and
diesel energy are measured in different units. The predictions are based on artificial neural networks.

prediction performance.
Figures 4 and 5 compare the performance of different models based on mean squared error

(MSE) for diesel and electric vehicles, respectively. Based on these results, neural networks are
the best predictors for both types of vehicles. However, we found that different network structures
work best for diesel and electric vehicles. For electric vehicles, the best model has one input, two
hidden, and one output layer. The input layer has one neuron for each predictor variable. The two
hidden layers have 100 neurons and 80 neurons, respectively. For diesel, the best model has one
input, five hidden, and one output layer. The five hidden layers have 400, 200, 100, 50, and 25
neurons, respectively. We use sigmoid activation in all hidden layers and linear activation in the
output layer. We train the models using the Adam optimizer [11] with learning rate 0.001. To im-
plement the ANN models, we use Keras, which is a high-level API of TensorFlow for building and
training deep learning models [12]. Figure 6 show the influence of various features on the models.

We also study how prediction accuracy varies with the length of transit trips. We divide our time
series into longer trips, varying the length of the trips between 10 minutes and 6 hours. For each
trip, we generate a set of samples, use our models to predict energy usage for each sample, and
then compare the sum of these predictions to the actual energy usage of the trip.
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Figure 7: Energy prediction error for longer trips, consisting of many samples, with neural network (ANN),
decision tree (DT), and linear regression (LR).

Figure 7 shows the relative prediction error for trips of various lengths. For each length, we plot
an average error value computed over many trips. We see that relative prediction error is generally
lower for longer trips; this is expected as the individual errors of large numbers of samples cancel
each other out with an unbiased prediction model. For diesel vehicles, we find that the ANN
outperforms the other models significantly for all trip lengths. On the other hand, for electric
vehicles, ANN and DT perform equally well for most trip lengths.

4 Micro Energy Predictors
In addition to the macro energy models applicable for route-specific analysis, we have also devel-

oped micro models that are finely tuned to individual vehicles. Such instantaneous energy predic-
tion are important in evaluating the energy impacts of real-time bus operation strategies. However,
they are challenge to build due to diversified driving cycles of transit buses. In this project, we
developed machine learning-based models to estimate the instantaneous power and cumulative
energy consumption of buses under real-world driving conditions. The training, validation, and
testing were done based on bus driving, road grade, and environment data in a long-term bus op-
eration monitoring experiment in Chattanooga, Tennessee. The most relevant predicting variables
are instantaneous speed, acceleration, VSP, weather, and road grade and functional class of road
links. We develop one model for each type of bus, i.e. diesel, hybrid, and electric buses. We ex-
plore various machine learning models, including Long-Short-Term-Memory, neural network with
different structural, etc. A K-fold cross-validation-based model selection process was conducted
to identify the optimal model structure and input variables in terms of prediction accuracy. The
estimation results show that the predicted mean absolute percentage error rates of the best predic-
tion models were within 10% for different types of buses. We compared the proposed models with
existing models in the literature based on the same testing data to demonstrate the predictability
of our models. There are two possible applications of the proposed model. One application is to
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(a) (b)

Figure 8: (a) Boxplot of absolute percentage error (%) for the microscopic energy consumption as a function
of vehicle specific power. (b) Mean and 95% confidence interval of absolute percentage errors of micro-
scopic energy prediction at different trip duration

retrospectively estimate energy savings of microscopic operation controls of electric buses, e.g.
transit bus intelligent transportation system applications. Another application is to predict energy
consumptions of future bus operations by integrating with a traffic simulator that can generate bus
trajectories under different route assignments as well as various background traffic conditions. We
discuss the specific models for electric buses and hybrid-diesel vehicles below.
4.1 Electric Buses

Energy prediction for electric buses is challenging because of the diversified driving cycles of
transit services. Literature review shows limited studies on the energy consumption of electric
buses. To solve the challenge, the team developed an ensemble of neural network-based EV bus
prediction models that achieves better accuracy performance compared with regular regression
models and accuracy performance comparable to physics-based models. The models cover three
different driving situations: regenerative braking (acceleration < −2ft/s2); aggressive accel-
eration (acceleration > 2ft/s2); and cruising (acceleration ∈ [−2, 2]ft/s2). The accuracy of
the three models outperforms the single model for predicting all driving conditions. This is pri-
marily because these three different scenarios are effectively three different modes, and energy
consumption dynamics vary significantly.

The model was tested with data collected in 2019 and 2020. Figure 8 shows the performance
of the model. We also trained a non-neural network model and compared its performance with
our neural network-based model. We use the 2019 data as a training set and the 2020 data as
the validation dataset. The results (Fig. 9) show that the mean absolute percentage errors and
confidence intervals of the artificial neural network model are consistently lower than those of the
linear regress model using either the original training data collected in 2019 or validation data
collected in 2020. Though, the differences seem to diminish as trip duration increase in all cases.
4.2 Hybrid Diesel Buses

As part of this project, we also designed a micro-prediction model for diesel and hybrid vehi-
cles. For this purpose, we developed an artificial neural network (ANN) based fuel consumption
estimation model that utilized 1Hz granularity real-world operation data. Figure 10 shows the
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(a) (b)

Figure 9: (a) Mean and 95% confidence interval of absolute percentage errors of microscopic energy predic-
tion with trip duration for different models. (b) Mean and 95% confidence interval of absolute percentage
errors of microscopic energy prediction at with respect to the vehicle specific power.

(a) (b)

Figure 10: (a) Mean fuel rate (liter per hour) and 95% confidence interval (shaded area) for diesel and hybrid
bus as a function of instantaneous vehicle specific power bins from 0 to 18 kW/ton with 1 kW/ton interval.
(b) Fuel savings of hybrid buses as compared with diesel buses by driving speed and instantaneous vehicle
specific power bins.

difference between diesel and hybrid vehicles in terms of fuel consumption. Figure 11 describes
the performance of the prediction model. The error decreases as the trip duration increases. This
is in line with the observations from the macro prediction models.

5 Transferring the Models to Other Communities
There are several challenges that another community trying to implement this approach of de-

veloping the prediction models may face. However, one of the foremost challenges is that they
will need to collect enough data to build a generalizable model. In agencies with smaller fleets
of a particular type of vehicle, this becomes difficult. The problem in particular stems from the
fact that separately training models for each type of vehicle ignore generalizable information not
explicitly modeled in the feature space. For example, our previous work modeled EVs and ICEVs
without sharing model parameters between classes [13]. Second, the number of vehicles in each
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(a) (b)

Figure 11: (a) Second-by-second actual fuel consumption rate (liter per hour) versus estimated fuel con-
sumption rate for one trip. (b) Mean absolute percentage error and 95 percentage confidence intervals for
predictions of artificial neural network (ANN) model and linear regression model with the same independent
variables as a function of trip duration.

class varies greatly, which leads to an uneven distribution of data available for training the energy
or emission prediction models. Third, and similar to the second problem in principle, when a new
vehicle class is added to an existing fleet, the agency must deploy vehicles, obtain data, and then
learn a new predictive model from scratch.

We addressed these challenges as multi-task learning (MTL) and inductive transfer learning
(ITL) problems [14]. Although different vehicle classes’ energy consumption depends on a var-
ied set of covariates through other non-linear functions, we hypothesize that broader generalizable
patterns govern the consumption of energy and vehicle emission. Thus, we formulated the emis-
sion (and energy) forecasting as an MTL problem. Our work found that this approach improves
the predictive accuracy for all vehicle classes compared to the macro prediction model described
earlier, where separate networks are trained to predict emissions (and energy) for each category
(hybrid, EV, and ICEV).

In a situation with imbalanced data or when an agency introduces a new model or class, we were
able to show that it is possible to learn a model for bus types with sufficient data, and subsequently,
transfer the learned abstraction to improve the predictive accuracy for the category with insufficient
data. The benefit of ITL is the ability to deploy the model earlier than the time required to collect
enough samples to train a separate model for the new class. We evaluated our MTL and ITL
models using real-world data from our CARTA’s mixed-fleet of EVs, HVs, and ICEVs. We found
that in both the MTL and ITL settings, our approach outperforms state-of-the-art methods. The
most significant improvements over baselines were in the ITL setting when the target vehicle class
suffers from a lack of data. However, we also find that ITL does not work well in some cases, such
as when transferring learned abstractions from EV to ICEV. The architecture of our approach is
shown in figure 12.

Figure 13 presents the key results. We find that for all vehicle classes, the MTL model out-
performs the vehicle-specific baseline models. The mean percent improvement in MSE is 8.6%,
17.0%, and 7.0% for ICEVs, HVs, and EVs, respectively. The mean percent improvement in MAE
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Figure 12: (a) MTL Model: DNN with hard parameter sharing for predicting emissions (kg CO2) of EVs
(ŶEV ), HVs (ŶHV ) and ICEVs (ŶICEV ). (b) ITL Model: shared-hidden layer parameters are frozen and
transfered to the target model. Energy consumed (kWh) is a linear function gi(·) for vehicle class i.

is 6.4%, 9.0%, and 4.0% for ICEVs, HVs, and EVs, respectively.
Next, we evaluated the performance of the ITL model. To train the ITL models, we use data from

all of the three-vehicle classes. We first prepare the source model for each source and target task
pair, freeze the shared hidden layers and transfer to the target model. Then, we optimize the target
model’s vehicle-specific layers. For each model, the available sample size to train the target model
is varied from 2%, 5%, 10%, and 15% of the total number of available samples to investigate the
influence of sample size in training the target models. This is consistent with what transit agencies
might face in practice; as a new vehicle is introduced, agencies gradually collect more data from it.
We test our approach for all pairs of vehicle classes. To compare the performance of the models,
we train baseline models that only use the training data from the target domain. For example,
while evaluating inductive transfer from EV to ICEV with 2% of the target data available, the
baseline model is trained exclusively on the same amount of data from ICEV class. To consider
the randomness in the training process, when evaluating the target and baseline models, we trained
each model 10 times on ten random samples from the target domain’s dataset and ten different
initial values for the parameters using Kaiming initialization.

We provide the results of the proposed ITL approach in Figure 14. We observe that the proposed
approach generally results in improved forecasting accuracy across the tested scenarios (except
when EV is used as source and ICEV is used as the target). We also observe that as the amount of
data from the target domain increases, both the ITL and the baseline (previously developed macro
prediction models) method show improved forecasting accuracy; however, the baseline methods
shows relatively higher improvement, to the extent of outperforming the ITL framework in some
cases (15% data from target domain in Figure 14 b, c, e and f). We therefore concluded that when
large enough data is available, the ITL approach should lead the way to either multi-task learning
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Figure 13: (a) MSE and (b) MAE of MTL model compared to vehicle-specific neural network models
(baseline) on testing set. Prediction target: emissions (kg CO2).

or baseline approach (models described in earlier sections). However, agencies, where not a lot of
data is available, they can start from models trained for other classes or other agencies and slowly
update the models as new data becomes available. The advantage is the speed with which the
predictive models become available to the transit agency.

6 Optimization of Mixed Transit Fleet
Based on the energy prediction models, the team set up an optimization problem that minimizes

fuel and electricity use by assigning vehicles to transit trips and scheduling them for charging
while serving the existing fixed-route transit schedule in Chattanooga. The problem formulation
is general and applies to any transit agency that has to provide fixed-route transit service using a
mixed fleet. The team introduced an integer program, a greedy algorithm, and simulated annealing
algorithms to solve the problem.

The greedy algorithm follows an iterative process, wherein each iteration computes the energy
cost for serving each unassigned trip using each of the available buses, chooses a pair of a trip and
a bus with minimum energy cost, and assigns the bus to the trip. In this process, the algorithm
computes the energy cost for serving a trip using a bus by factoring in the waiting times between
assignments to maximize utilization. The algorithm terminates once all the trips are assigned to a
bus or no more feasible assignments exist.

The simulated annealing algorithm generates an initial solution using the greedy algorithm. Then
in each cycle of simulated annealing, the algorithm generates a new solution, which is chosen at
random from the neighborhood of the current solution, and then either adopts or rejects the new
solution with some probability based on the difference in the quality of the existing and new solu-
tions. The random neighbor generation chooses two buses at random and groups the assignments
of the selected two buses into two groups based on the start time of the trips, then picks one group
and swaps the bus assignments in the selected group. The algorithm repeats this process until a
required number of swaps have been performed.

The team evaluated the algorithms on CARTA’s transit routes using the macro-level energy pre-
dictors to assess the objective. Fig. 15(a) compares the solution quality of simulated annealing and
greedy algorithms to the integer program (IP), which is optimal but does not scale computationally.
The figure shows that simulated annealing performs slightly better than greedy, but neither is opti-
mal. On the bright side, the cost ratio between IP and our heuristics improves for more significant
instances. Fig. 15(b) shows energy costs for the complete daily schedule of CARTA using three
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Figure 14: ITL models compared to corresponding baselines. ITL model is trained on full dataset in the
source vehicle class and is evaluated on the target vehicle class (source−→ target). Average MSE compared
to fraction of data samples used for training in the target vehicle class. Prediction target: emissions (kg CO2).

(a) (b)

Figure 15: (a) Energy costs for assignments using the integer program, simulated annealing, and greedy
algorithm for various number of bus lines. (b) Energy costs for assignments using the greedy algorithm and
simulated annealing for complete daily schedules, compared to existing real-world assignments.

electric and 50 diesel buses using greedy and simulated annealing algorithms. The results show
that the proposed algorithms are scalable and can reduce energy usage, environmental impact, and
operational costs. The proposed algorithms could save $48,910 in energy costs and 175 metric
tons of CO2 emission annually for CARTA.
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7 Data Dashboards and Simulator
To ensure the outreach of our results, we have also developed a simulator and a set of web appli-

cations (Fig. 16). They enable the research community to simulate different trip rosters and check
their overall energy efficiency. The simulator provides the ability to program specific scenarios—
time of day, weather, traffic patterns, route schedules, and trip assignments (vehicles to routes)—
and simulate energy consumption for the day. The simulator uses the energy prediction models
and the travel demand and occupancy data collected from the CARTA vehicles during the project.

Figure 16: The energy dashboard is available at https://smarttransit.ai/energydashboard/
and provides statistics and analysis from the data collected in the project.
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A Source Code
The project toolchain is available at the following repositories

• https://github.com/smarttransit-ai/macro-energy-prediction - This
repository contains the code for estimating the energy consumption for all trips on a given
day in the future in the CARTA fleet using the machine learning models built during the
project. The repository provides instructions to build a docker image and provides instruc-
tions on using the models. The archive folder withing the repository describes the source
code for replicating the data collection and prediction scripts at a different transit performer
location.

• https://github.com/smarttransit-ai/micro-energy-prediction describes
the micro prediction models and how to train them and use them.

• https://github.com/smarttransit-ai/ECML-energy-prediction-public
describes the improvements to the prediction models using multi-task learning and inductive
transfer learning.

• https://github.com/smarttransit-ai/EnergyOptCode-AAAI describes the
optimization routines.

Further information about the project is available from https://smarttransit.ai/.
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