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About Us

We are a research team that collaborates with Chattanooga Area Regional Transportation Authority (CARTA) and Nashville WeGo to design efficient transit
operation algorithms by using artificial intelligence and real-time data analysis at scale. This includes reinforcement learning, Monte-Carlo tree search, and
operations-research based optimization for system-wide integrated scheduling and dispatch of transit operations. As part of this work, we are also developing
models to estimate the load factors and real-time energy consumption of mixed-vehicle transit fleets and use those models to predict and optimize operations in Smarttransit_ai
order to lower overall energy impact while ensuring that system-wide capacity remains unaffected.
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Our approach

We use a socio-technical approach to address community-scale transit problems improving
accessibility and coverage in an equitable and fair manner, while optimizing for energy efficiency
and cost.
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Research Overview

SR, . . ‘§§| Scheduling and
Mach L
[lon, Viachine Learning ﬁOptimization of Operations

* Predicting ridership using machine
learning models * Proactive optimization of fixed- *  On-demand prioritization and
dispatch for microtransit and

. g : route transit services
Predicting energy consumption of the paratransit services

mixed transit fleet. * maximize transit accessibility while . _
minimizing crowding * Assign the calls to on-demand transit
* Predicting travel time and delays o , in anticipation of the fixed line
deri ther. local " q * minimize energy usage by choosing schedule
consiaering vveatner, local events an optimal vehicle type assignments for _ o
Ikelinood of incidents. i  Consider real-world constraints like
. ) , . . Consideri isent ci ; driver hours and driver contracts on

for public transit. * Integrate day ahead and real-time

e Origin destination models for scheduling.
understanding demand shift using * Provide pluggable service quality and
computer vision models. optimization metrics.
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Research Overview

m Building Community Oriented and Agency Oriented Operational Software and

Simulation Tools.

* Provide multi-modal travel planning software and apps
considering predicted travel delays.

* Full city transportation and transit simulation for analyzing
the impact of changes in service schedules to the
community.

* Passenger guidance feed for estimating the likelihood of
congestion in transit vehicles.

* Dashboards for visualizing occupancy, delays, travel times
and energy usage for past trips.

* Big data architecture for managing real-time and historical
telemetry of multimodal performance and vehicle level data
for the fleet.

Data Source Frequency Scope Features Schema/Format
Diesel vehicles | ViriCiti and Clever Devices | 1 Hz 50 vehicles Sd[; fng‘t’:r'ii‘;]lg“gln’fe‘fl[) Viriciti SDK and Clever API
Electric vehicles | ViriCiti and Clever Devices | 1 Hz 3 vehicles GPS, charging status, battery current, Viriciti SDK and Clever API
voltage, state of charge, odometer
Hybrid vehicles | Viriciti and Clever Devices | 1 Hz 7 vehicles GPS, fuelTevel, fuel rate, odometer, | v, ;. SDK and Clever API
trip ID, driver ID
= TMCID, free-flow speed, Traffic Message Channel
Traffic HERE and INRIX 1Hz Chattanooga region current speed, jam factor, confidence | (TMC)
Road network OpenStreetMap Static Chattanooga region | Road network map, network graph %’;&S)tthap
. Temperature, wind speed, F
Weather DarkSky 0.1 Hz Chattanooga region precipitation, humidity, visibility Darksky API
Elevation gelr(l:nessee Static Chattanooga region | Location, elevation GIS - Digital Elevation Models
Fixed-line transit . . Scheduled trips and trip times, General Transit Feed Specification
iiliedulss CARTA Static Chattanooga region routes, stops (GTFS)
Video Feeds CARTA 30 Frames/Second \//\e]:liﬁc)l(eesd-]me Video frames Image
APC Ridership CARTA 1Hz \/I\elll]itz)l(:f-lme Passenger boarding count Transit authority specific

per stop

Real-time S
Data
Real-time Real-Time Model
Applications Inference

Stream Processing

Pub-sub

(Apache Pulsar)

|

Static Data

l

NoSQL
— B —
! \

Model
Training

Monitoring
Applications

Visualization
Dashboards
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Chattanooga Area Regional
Transportation Authority

CARTA is a representative sample of a mid size city
transit agency
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CARTAGO

Mobility on Demand
park.



Machine Learning
and Data Analytics



Integrating S in the Vehicl
' ‘ : 4 3 | "8 3 High resolution sensor data aggregation from all transit vehicles.
e -+ —4 . E Anomaly detection and data store for supporting high integrity, velocity, and volume
‘ - W Micro (Vehicle Specific), Macro (Elevation, Weather and Traffic) Energy Prediction for Mixed Fleet
Operational Guidance for Mixed Fleet Operations and City-wide geo-spatial visualization.

Anomaly
Detection and
online learning

Data
aggregation
In Pulsar

() VIRICITI

zation

Vehicle Mobility

Data
This is the DataHub
The DataHub is ViriCiti's own plug & play
on board solution. The DataHub is small,
energy efficient and easy to install. d W viric

- W telemetry
o/ > T

Due to its unique firmware, the DataHub is =)o (.| H%; H sensors
highly flexible and allows you to run your ® s s

own programs on its AppLayer.

System Architecture
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Understanding
Energy Consumption




Understanding Energy Costs

Energy (kWh/mile) per Route — BYD Electric Vehicles Energy (kWh/mile) per Route Gillig Diesel Vehicles

>
©
o
N
Q
€
'_
14:00 to 16:00
0\5

Route . Route
Route 21 — has more stops and hilly terrain Route 21 — consumption is ~ 4 times more than electric

® Diesel vehicles are more affected by time of day than electric vehicles.
This supports our thoughts that electric vehicles perform better in high traffic.

® The scales of the heatmap are different because of the difference in energy consumption magnitude between
electric and diesel vehicles

.al



Macroscopic Energy Prediction

g Vehicle make and model

.. Route (series of locations)

Day of week, time of day

Expected Weather, Expected Traffic

ICEV D
EV }——{
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network

Energy use
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Watt-seconds)

Vehicle
Speed

Weather Traffic
Features Features

Segment
Features
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Figure 9: (a) Mean and 95% confidence interval of absolute percentage errors of microscopic energy predic-
tion with trip duration for different models. (b) Mean and 95% confidence interval of absolute percentage
errors of microscopic energy prediction at with respect to the vehicle specific power.



Understanding
Ridership




0%

Ridership Trends

Spatial and Socio-Economic Analysis -20%

 Significant decrease in ridership in retail and shopping areas -40%

* Decrease in transit ridership is more significant in high-income

neighborhoods than in low-income ones -60%

* Other significant factors include housing value and rent 800

Metric Pearson Correlation -100%

Median housing 0.35 40%

value e 20% |- .
z 0% |- -

Median income 0.21 k3 o

Medi QE —20% Lockdown

edian rent 0.15 8 _40% | |

&n

% White 0.01 g —60% - .
S5 80% | ™ Low-income Group |

% African American -0.02 100 —m— High-income Group

% Hispanic -0.19 - ° Jan Feb Mar Apr May Jun Jul

Month

Publication: Wilbur et al., “Impact of COVID-19 on Public Transit Accessibility and Ridership,” 2021 Annual Meeting of the Transportation Research Board.
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Demand Estimation (boarding events, origin-destination events)

Approach: Use the automated passenger counter data, fare box data and camera data to create models
for learning the distribution of commuters across bus stops and develop statistical models for prediction
the future demand

Wednesday Stop ID: 1919

Occupancy is a composition of two
random processes: boarding and

e Models for :
alighting. predicting o
® demand S ‘ :
« Board counts: y.(s;) ~ Po(A;,") per route, J . |
« Alight counts: o;(s;) ~ Po(}\ff)) per stop = _4j ﬁH%ﬂ:ﬁ

We need to learn distributions: Fb ()/t (SJ'W) * Automated Passenger Counter (APC Data)

and F,(a:(s;)|w). These can be used to + Farebox Data » Correction Factor
seed a generative model that can be used =~ ° Tve!Pemand Model Data

to predict the likely demand at any bus stop
at any time in the future given the nearby
events, weather and information about that
day.

Challenges: privacy, robustness of prediction, understanding and responding to distribution shifts
ai




Understanding

Delay and Exigent
Circumstances
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Computing Bottleneck Information

Map  Styled Map

The Hermitage Fprm =

&
o Herfrace
o®

-

Long-term (Months Ahead)

Event and Traffic _
Affect Model > [ New Timetable ]

/ Data Feeds

Map data ©2016 Google  Terms of Use

Shared Route Segment Network

\

Short-term (Days Ahead)
""""""" \ {"'"""""'\I
Weatherand . |
TrafficModel — ,© | Senvice Alert

(

.

Real-time (Minutes Ahead)

(

Traffic and Predicted
Operational Delays Arrival Time

\

Commuters )
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Schedule and
Operations Optimization

smarttransit.ai



Optimizing for delays

‘!‘ ! Forest Hills -. .Y‘ & o/
Original Optimized

We scheduled using heuristics algorithms adjusting for seasonal delays. The result is an optimized
GTFES for the next season.
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Optimizing for Energy Consumption

Gransit Trips >H@uses (EVs and ICEVs) >H6harging Slots>

Assign EVs to Charging Slots

i
1 22

Assign Transit Trips to Buses

100 %
2 98%
S 96%| —_
5 94% |
i f d red | goo R
Daily : saves $399 of Energy Cost and reduces 1.58 metric tonnes o 0% —Grecdy T
CO2 Algorithms
* Annually: saves $145k of Energy Cost and reduces 576.7 metric tonnes
of CO2

smarttransit.ai



Optimizing for Social Distancing

* Affordable public transit services are the backbones of
many communities, providing diverse groups of people
with access to employment, education, and other public
services

* COVID-19 has disrupted the operations of public transit
agencies and created exigent challenges for them

Passenger Monitoring

* APC/Ridership Data

* Camera Feeds
(Chattanooga)

Operational mitigation

and optimization

! ' -term mitigation
ﬁ '"' * Resource Challenges (Shortte tigatio
| ] |

L Long-term optimization

]
)

* Reduced vehicle capacities due to social-
distancing requirements

* Reduced driver availability due to isolation and
quarantine requirements

* reduced service (e.g., weekend schedule on
weekdays)

* Disinfection requirements

A

Passenger
counting
application

TRANSIT SYSTEM
B action | »g;g = 55

add additional
vehicle to
transit route

Transportation service Passenger app
88
-
Vehicles  Passengers < (9 ° Trip planning <€ A
. . eesenes’
Q Elm‘ o Passenger information <&

# )

Cameras APC

\ Crowdsensing survey

v

Video analytics

o

=P APC data cleaning

R0

A '
. . 29GP Weather, traffic,
Data feed integration <= @Bw# .. cvent data

Load prediction models
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Handling Large Scale EV Integration

/Simulation

Replicates the transit system
to estimate the impact of
potential charging schedules

/Traffic Simulator

Models travel times and battery discharge under
varying traffic conditions

Traffic Z
network /$
= SUMO

Simulation of Urban MObility
Micro traffic simulator
Built in EV bus models

OpenStreetMaps
- Roadway Network -
- Transit Schedules -

.

A\

/Grid Impact Model

Captures the impact charging actions have on the
power grid

=
BEN A7 Son s
e =
Impact metric derived from... I - TRienknd
- Line losses SNENPRa |
- Power phase balancing TN} e
- Etc. N2 X

Case study’s feeder network

-

_/

State
updates,
Estimated
rewards

q

Charging
actions
to evaluate

h

/Decision Agent

Evaluates potential charging schedules by
estimating their long-term effects

Monte Carlo Tree Search

- Represents control process as
game tree

- Asymmetrically grows tree,
balancing exploration and
exploitation

- Estimates values of actions

using surrogate models

- Online algorithm; no training
needed (unlike reinforcement
learning). adaptable to dynamic
environments

e )
Reward Function

.=—e+ g+ ons

* energy costs (e)
*  power grid impact (g)
*  Number of failed buses (ny)

Tradeoff parameter (f)




Optimizing for Paratransit and Microtransit

- Approach: A generalized Modular framework. Modular system allows easy integration of

features (e.g., walk and ride, demand prediction, EV fleets)
PROBLEM (LP)

TRAVEL REQUEST \ RIDER TRIP
TRIP
ASSIGNMENT

PAIRWISE RIDER

VEHICLE GRAPH | (.
VEHICLE STATUS /

VEHICLE GRAPH #
dentify all possibilities) AND PENALTY

ASSIGNMENT /
PROBLEM (ILP)

FOR MISSED

e

__________________

Challenges: computation complexity, operational uncertainty and real-time requests.
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High capacity sharing at the scale of NYCin real-time

TLC
TRIP DATA

Sample week:
May 5 - 11,2013
380k (Sun) — 460k (Fri) trips/day
2000 active trips at anytime NYC Network: 4,092 nodes, 9,453
Served by 13,580 taxis edges

.al




The color of each vehicle (circle)
shows the number of passengers,
from light blue (empty)

to dark red (full).

The vehicles move to serve
incoming requests

1
9
8
7
6
3
4
3
2
1
0

Service rate, c. [total]:

0% [0%]

Waiting time, c.m.:
Omin0s

In-car delay, c.m.:
Omin0s

Occupancy, c.m.:

0.0 pass/vehicle 4
ravel distance, c.m.: //
0 km/vehicle

n: 1000 vehicles
c: 10 passengers
W: 7 min

D: 14 min

Day: Th 5-18-2013

» » =« o Time: 00:00:00
Midnight™



Optimizing for Paratransit and Microtransit

Considerations: Multi-modal system. Incorporating real-time transit schedules (moving deadlines). Transfer
deadlines need to be enforced (travel-time uncertainty in both shuttle and transit). Walking to pickup points
(Group TSP problem)

Monte Carlo Tree Search: Game theoretic tree representation of process.
Nodes = states, Edges = actions. The tree grows asymmetrically and uses fast (online), " Y Y 5
simulated playouts to estimate value of node M MMY ? yw m ’ ’; ” w

Fix Routes Two-Stage Planning

1. Fixed routes generated by IP.

1. Integer Program to optimize Relatively time-consuming.

day-ahead requests. >
A 2. Once routes are decided, real-
2. Minimize energy and labor

costs.

time requests are considered by an
online optimizer.

3. Maximize service.

- Challenges: Transit centric online problems also lead to larger problem instances than in
ridepooling. Real-world QoS constraints. Larger capacity vehicles. Advanced bookings

smarttransit.ai



Integrated Vision

——————————————

@\ SIMULATION
ENVIRONMENT

TRANSPORTATION S5
PACKAGE oo

° Filtering,

aggregation @ ?e w .§¢

———0 () e &
RAlLlGENT

OD matrix, dependency [kl
' mE) COURTESY
- '

V& VEHICLE ELECTRIC
é% MAINTENANCE CHARGING SCHEDULE CHARGING
VEHICLES

FIXED-ROUTE ON-DEMAND

Sl TRANSIT SERVICE ' TRANSIT SERVICE
o COURTESY STOPS DISPATCH & ROUTING =7
ElmY Fixeo-scHepuLe @ ON-DEMAND

TRIPS TRIPS

¢, &
G‘qssl P\gﬁ\(’
GNMENT & R®
TRANSIT TRIP AGGREGATION & PRIORITIZATION
REQUESTS

Our approach is to design a microtransit system which can serve some routes on-demand and integrate it with
the fixed line system of the city. Designing this system, we must consider the operating region and think about
the areas where we can transfer between the on-demand trip and the fixed line trips

S —————— —_———

HERE API
TRAFFIC
DATA

graph generation P

Onboard analytics,

: Wl DARK SKY Pre-processing
§ WEATHER

ONBOARD
VIDEO
FEEDS

DATA

e e e A e e e e R

EXISTING CARTA
DATASOURCES
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Community Outreach




Community
Engagement

Identification of local
community institutions
composed of existing
relationships. Settings to likely
include:

Community Centers
Schools

Signal Centers
Public Housing

Local Community College

smarttransit.ai




Mean Work Commute Time

o 28 minutes
£
S 200k
S 26 minutes
o
2
5 :
g 150k 24 minutes
2
c 22 minutes
o
s
100k
o 20 minutes
]
£
.“3 18 minutes
w 50k
0 =
Q o
< ® -16 minutes
0

0.2 0.3 0.4 0.5 0.6 0.7
ACS Estimate Percent of People Traveling to Work Alone by Census Tract

Bike stations in Pittsburgh are more
accessible to high-income
neighborhoods.

Less bike stations are available to low-income neighborhoods who have short

commute times to work.

Answering questions and providing information to
the community about equity

smarttransit.ai




Evaluating What if Scenarios

We are developing the ability to evaluate different scenarios and test the algorithms against
changing demand, vehicle mix (electric vs ICEV vs Hybrid), weather and traffic patterns.

- . 1] .
: ' 1 e o/ ! 1 @ ' Passenger occupancy of each Hour

' ' ! ' ' o5 bus along the bus stops 0.04 -_—
: —> » g | S— " ' ' ‘ ) by trips across 24 hours B
. ' ' oc— | ' OutputValues | |- i =
' X , DSLEditor+  Scenario | X ' B : 003
' » . Interpreter +  Specification , . v BT ‘ z
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Challenges: multi-scale simulation, scenario specification, calibration of simulation models.
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