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Our approach

Cyber Physical Systems

Data Sciences and Machine
Learning

Education and Community 
Engagement

We use a socio-technical approach to address community-scale transit problems improving 
accessibility and coverage in an equitable and fair manner, while optimizing for energy efficiency 
and cost.

Social Sciences
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Research Overview

• Predicting ridership using machine 
learning models

• Predicting energy consumption of the 
mixed transit fleet.

• Predicting travel time and delays 
considering weather, local events and 
likelihood of incidents.

• Analyzing equity and fairness metrics 
for public transit.

• Origin destination models for 
understanding demand shift using 
computer vision models.

• Proactive optimization of fixed-
route transit services
• maximize transit accessibility while 

minimizing crowding
• minimize energy usage by choosing 

optimal vehicle type assignments for 
each trip.

• Considering exigent circumstances
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Machine Learning Scheduling and 
Optimization of Operations

• On-demand prioritization and 
dispatch for microtransit and 
paratransit services
• Assign the calls to on-demand transit 

in anticipation of the fixed line 
schedule

• Consider real-world constraints like 
driver hours and driver contracts on 
minimum and maximum hour of work

• Integrate day ahead and real-time 
scheduling.

• Provide pluggable service quality and 
optimization metrics.
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Building Community Oriented and Agency Oriented Operational Software and 
Simulation Tools.

• Provide multi-modal travel planning software and apps 
considering predicted travel delays.

• Full city transportation and transit simulation for analyzing 
the impact of changes in service schedules to the 
community.

• Passenger guidance feed for estimating the likelihood of 
congestion in transit vehicles.

• Dashboards for visualizing occupancy, delays, travel times 
and energy usage for past trips.

• Big data architecture for managing real-time and historical 
telemetry of multimodal performance and vehicle level data 
for the fleet.

Research Overview
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Chattanooga Area Regional 
Transportation Authority

CARTA is a representative sample of a mid size city 
transit agency
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Chattanooga Area Regional Transportation Authority (CARTA)  
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Machine Learning 
and Data Analytics
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Integrating Sensors in the Vehicles
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Understanding 
Energy Consumption
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Understanding Energy Costs

● Diesel vehicles are more affected by time of day than electric vehicles.
This supports our thoughts that electric vehicles perform better in high traffic. 

● The scales of the heatmap are different because of the difference in energy consumption magnitude between 
electric and diesel vehicles

Route 21 – has more stops and hilly terrain Route 21 – consumption is ~ 4 times more than electric

Energy (kWh/mile) per Route – BYD Electric Vehicles Energy (kWh/mile) per Route Gillig Diesel Vehicles
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Macroscopic Energy Prediction

Neural 
network

Vehicle make and model

Route (series of locations)

Day of week, time of day

Energy use
(gallons or 
Watt-seconds)

Expected Weather, Expected Traffic
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Microscopic Energy 
Prediction Models

Predicting Vehicle Specific 
Statistics along the trip
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Understanding 
Ridership
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Ridership Trends
Spatial and Socio-Economic Analysis
• Significant decrease in ridership in retail and shopping areas 

• Decrease in transit ridership is more significant in high-income 
neighborhoods than in low-income ones

• Other significant factors include housing value and rent

24

Publication: Wilbur et al., “Impact of COVID-19 on Public Transit Accessibility and Ridership,”  2021 Annual Meeting of the Transportation Research Board.

Metric Pearson Correlation

Median housing 
value

0.35

Median income 0.21

Median rent 0.15

% White 0.01

% African American -0.02

% Hispanic -0.19



smarttransit.ai

Demand Estimation (boarding events, origin-destination events)
Approach: Use the automated passenger counter data, fare box data and camera data to create models 
for learning the distribution of commuters across bus stops and develop statistical models for prediction 
the future demand

Challenges: privacy, robustness of prediction, understanding and responding to distribution shifts

Occupancy is a composition of two 
random processes: boarding and 
alighting. 

• Board counts: 𝛾! 𝑠" ~ 𝑃𝑜(λ#
(!))

• Alight counts: α! 𝑠" ~ 𝑃𝑜(λ&
(!))

We need to learn distributions: 𝐹#(𝛾!(𝑠")|𝑤)
and 𝐹&(α!(𝑠")|𝑤). These can be used to 
seed a generative model that can be used 
to predict the likely demand at any bus stop 
at any time in the future given the nearby 
events, weather and information about that 
day.

• Automated Passenger Counter (APC Data)
• Farebox Data
• Travel Demand Model Data

• Correction Factor

Models for 
predicting 
demand 
per route, 
per stop

smarttransit.ai 
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Understanding 
Delay and Exigent 
Circumstances
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Computing Bottleneck Information

Long-term (Months Ahead)
Event and Traffic 

Affect Model New Timetable

Short-term (Days Ahead)
Weather and 
Traffic Model Service Alert

Real-time (Minutes Ahead)
Traffic and 

Operational Delays
Predicted

Arrival Time

Commuters

Shared Route Segment Network

Data Feeds
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Short-Term Delay Non-Recurring Events: NFL Games
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Schedule and 
Operations Optimization
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Optimizing for delays

Original Optimized 

■ 90%
■ 70%
■ 50%
■ 30%
■ 10%

■ 90%
■ 70%
■ 50%
■ 30%
■ 10%

We scheduled using heuristics algorithms adjusting for seasonal delays. The result is an optimized 
GTFS for the next season.
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Optimizing for Energy Consumption

Transit Trips Buses (EVs and ICEVs) Charging Slots

Assign Transit Trips to Buses
Assign EVs to Charging Slots

S
0

S
1

S
2

S
21

S
22

S
23

• Daily : saves $399 of Energy Cost and  reduces 1.58 metric tonnes of 
CO2

• Annually: saves $145k of Energy Cost and reduces 576.7 metric tonnes
of CO2
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Optimizing for Social Distancing

• Affordable public transit services are the backbones of 
many communities, providing diverse groups of people 
with access to employment, education, and other public 
services

• COVID-19 has disrupted the operations of public transit 
agencies and created exigent challenges for them

• Resource Challenges

• Reduced vehicle capacities due to social-
distancing requirements

• Reduced driver availability due to isolation and 
quarantine requirements
• reduced service (e.g., weekend schedule on 

weekdays)

• Disinfection requirements

Passenger Monitoring
• APC/Ridership Data
• Camera Feeds 

(Chattanooga)

Passenger 
counting 

application

TRANSIT SYSTEM
ACTION

add additional 
vehicle to 
transit route

Vehicles Passengers

Transportation service

Cameras APC

Passenger app

Trip planning

Passenger information

Crowdsensing survey

Data feed integration

Video analytics

APC data cleaning

Load prediction models

Weather, traffic, 
and event data

Operational mitigation 
and optimization

Short-term mitigation

Long-term optimization



Handling Large Scale EV Integration
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Simulation Traffic Simulator
Models travel times and battery discharge under 
varying traffic conditions

OpenStreetMaps
- Roadway Network
- Transit Schedules

Simulation of Urban MObility
- Micro traffic simulator
- Built in EV bus models

Traffic
network

Grid Impact Model
Captures the impact charging actions have on the 
power grid

Case study’s feeder network

Impact metric derived from…
- Line losses
- Power phase balancing
- Etc.

Charge
- 9:00

- 13:00

Charge
- 17:00

Replicates the transit system 
to estimate the impact of 
potential charging schedules

Decision Agent

State
updates,

Estimated
rewards

Charging
actions

to evaluate

Evaluates potential charging schedules by 
estimating their long-term effects

𝑟! = −𝑒 + 𝛽𝑔 + 𝜑𝑛"
• energy costs (e)
• power grid impact (g)
• Number of failed buses (𝑛!)
• Tradeoff parameter (𝛽)

Reward Function

Monte Carlo Tree Search
- Represents control process as 

game tree
- Asymmetrically grows tree, 

balancing exploration and 
exploitation

- Estimates values of actions 
using surrogate models

- Online algorithm; no training 
needed (unlike reinforcement 
learning). adaptable to dynamic 
environments 

Notable application: 
world-champion 

defeating Go 
program[1]

[1] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
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Optimizing for Paratransit and Microtransit

- Approach: A generalized Modular framework. Modular system allows easy integration of 
features (e.g., walk and ride, demand prediction, EV fleets)

Challenges: computation complexity, operational uncertainty and real-time requests.

1 2
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RIDER TRIP
 VEHICLE GRAPH

(Identify all possibilities)

ASSIGNMENT 
PROBLEM (ILP) 
AND PENALTY 
FOR MISSED 

RIDES

TRAVEL REQUEST

VEHICLE STATUS

PAIRWISE RIDER 
VEHICLE GRAPH

REBALANCING 
PROBLEM (LP)

TRIP 
ASSIGNMENT 
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Sample week:
- May 5 - 11, 2013
- 380k (Sun) – 460k (Fri) trips/day
- 2000 active trips at anytime
- Served by 13,580 taxis

NYC Network: 4,092 nodes, 9,453 
edges

High capacity sharing at the scale of NYC in real-time
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Optimizing for Paratransit and Microtransit

Considerations: Multi-modal system. Incorporating real-time transit schedules (moving deadlines). Transfer 
deadlines need to be enforced (travel-time uncertainty in both shuttle and transit). Walking to pickup points 
(Group TSP problem)

- Challenges: Transit centric online problems also lead to larger problem instances than in 
ridepooling. Real-world QoS constraints. Larger capacity vehicles. Advanced bookings

Monte Carlo Tree Search: Game theoretic tree representation of process. 
Nodes➞ states , Edges➞ actions. The tree grows asymmetrically and uses fast (online), 
simulated playouts to estimate value of node
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Integrated Vision

SEAMLESS
TRANSFER

MAINTENANCE SCHEDULE CHARGING SCHEDULE

COURTESY STOPS DISPATCH & ROUTING

VEHICLES

SERVICE
ASSIGNMENT

TRIP AGGREGATION & PRIORITIZATION

ELECTRIC
CHARGING

VEHICLE
MAINTENANCE

FIXED-SCHEDULE
TRIPS

FIXED-ROUTE
TRANSIT SERVICE

VEHICLE ASSIGNMENT & REASSIGNMENT

ON-DEMAND
TRIPS

ON-DEMAND
TRANSIT SERVICE

TRANSIT
REQUESTS

Our approach is to design a microtransit system which can serve some routes on-demand and integrate it with 
the fixed line system of the city. Designing this system, we must consider the operating region and think about 
the areas where we can transfer between the on-demand trip and the fixed line trips



Community Outreach
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Community 
Engagement

Identification of local 
community institutions 
composed of existing 
relationships. Settings to likely 
include:

• Community Centers

• Schools

• Signal Centers

• Public Housing

• Local Community College
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Bike stations in Pittsburgh are more 
accessible to high-income 

neighborhoods.

Less bike stations are available to low-income neighborhoods who have short 
commute times to work.

Answering questions and providing information to 
the community about equity
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Evaluating What if Scenarios

We are developing the ability to evaluate different scenarios and test the algorithms against 
changing demand, vehicle mix (electric vs ICEV vs Hybrid), weather and traffic patterns.

Challenges: multi-scale simulation, scenario specification, calibration of simulation models.
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Real-time dashboards
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We are building live community dashboards to make the service 
performance indicators readily available for analysis and 
introspection
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Thank You
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https://smarttransit.
ai/publications/

https://smarttransit.ai/publications/

