BTE-Sim: Fast Simulation Environment For Public Transportation

Rishav Sen, Toan Tran, Seyedmehdi Khaleghian, Mina Sartipi, Philip Pugliese, Himanshu Neema, Abhishek Dubey

These works have been supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy, and National Science Foundation.
Long-term Objectives

Chattanooga Area Regional Transportation Authority (CARTA)

- Energy per passenger mile
- Total energy consumed
- Availability of daily trips served by transit

10%
The simulation environment

• Primary focus on public transit simulation
 • only the transit system’s setting changes while the rest remains stable

• 3 main blocks of the system:
 • Transit system
 • Background traffic (other modes of transportation)
 • Transportation infrastructure

• Addressing the current challenges:
 • Scenario-specific simulation
 • Speeds up the simulation
 • Can be repeated with varying number of vehicles, in the same setting
Inputs
- OSM network (road network)
- Transportation Demand*
- GTFS (bus schedule)
- Bus fleet Details
- Passenger vehicle count (for movement of vehicles other than transit buses)

Python intermediate
Converts the input files into formats used by SUMO

Transit simulator (SUMO)
Perform 24 hour simulation (or for desired time duration)

Outputs
- Bus movement details (position, time, speed, acceleration)
- Can derived estimated energy use

N.B: Background traffic is all other cars and passenger vehicles except transit buses.

*Assumption: 25-30% of city’s people are moving during the day
Calibration procedure

* ANOVA - Analysis of Variance
Transit simulation (without background traffic)

Inputs
- OSM network (road network)
- Transportation Demand*
- GTFS (bus schedule)
- Bus fleet Details
- Calibrated background speeds (from with background simulation, or APC or INRIX)

Python intermediate
- Converts the input files into formats used by SUMO

Transit simulator (SUMO)

Outputs
- Bus movement details (position, time, speed, acceleration)
- Can derived estimated energy use

*Assumption: 25-30% of city’s people are moving during the day
Preparing the Network for Simulation

1- Import Network from OSM*

2- Import network into SUMO (netconvert tool)

3- Edit using netconvert:
Remove railroad, polygons, walk-road, unnecessary edges

4- Edit traffic lights and intersection controlling
detectors

*OSM - OpenStreetMaps
The geographic area under consideration is **Chattanooga**, Tennessee. The city is further divided into **census tracts**. We find the movement matrix of people travelling for jobs (LODES) from census tract to census tract. The generated od pairs are used as requests for our solver.

Each row in either dataset represents a single trip by one person. The trip represents movement to the job location and then back to home, at certain times of the day, which are sampled from a given set of regular job start and job end times.

Data
- Geographic data
- People movement
 - LODES dataset
- Residential and Work locations
- Microsoft Buildings dataset

Process
The home location acts as the **origin**, while the work location acts as the **destination**. By uniform sampling across the home and commercial locations, a combination of the home location, work location, travel start time, and return time is generated.
Current bus routes (GTFS)

* bus fleet information also obtained from CARTA
Bus movement in SUMO simulation (without background traffic)
Results

Fig1. Comparing the accuracy of the simulation methods

Fig2. Visualizing accuracy of the background traffic data sources

Fig3. Performance over varying travel origin-destination data

Fig4. Computation time of BTE-Sim vs Transit-Gym (on same system)

<table>
<thead>
<tr>
<th>No. of vehicles</th>
<th>BTE-Sim (minutes)</th>
<th>Transit-Gym (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100k</td>
<td>2.21</td>
<td>27.7</td>
</tr>
<tr>
<td>400k</td>
<td>5.11</td>
<td>244</td>
</tr>
<tr>
<td>800k</td>
<td>7.81</td>
<td>1,011</td>
</tr>
<tr>
<td>1400k</td>
<td>8.27</td>
<td>2,478</td>
</tr>
</tbody>
</table>
Further results

Fig5. Bus arrival times for different dates (compared to baseline)

Fig6. Probability density function (pdf) of occupancy

Fig7. Maximum occupancy on each of the routes
Conclusion: BTE-Sim

- Ability to simulate a region’s transit system while accounting for its population and non-transit users
- Considerable improvements in simulation time and computing resources over regular simulation.
- Can also be used for multiple purposes:
 - proposing new transit routes
 - changing sections of existing routes
 - estimating energy consumption on each trip
 - new types of transit vehicles
 - alternate modes of public transportation (like micro-transit)
THANK YOU