# **Energy and Emission Prediction for Mixed-Vehicle Transit Fleets Using**Multi-Task and Inductive Transfer Learning

Michael Wilbur, Ayan Mukhopadhyay, Sayyed Mohsen Vazirizade, Philip Pugliese, Aron Laszka, Abhishek Dubey



## UNDERSTANDING THE PROBLEM

- In U.S., transportation accounts for 35% of CO2 emissions and 28% of energy consumption. Public transportation is responsible for 21.1 million metric tons of CO2 each year.
- For fixed line bus systems, adopting electric vehicles (EVs) and hybrid vehicles (HVs) reduces greenhouse gas emissions and longterm operational costs.
- However, EVs and HVs have high upfront costs and must be integrated into existing diesel (ICEV) fleets.
- Therefore, most agencies are tasked with managing a mixedfleet of ICEVs, HVs and EVs.



Fig. 1 – The energy prediction problem. The goal is to predict emissions (CO2) or energy (kWh) for each vehicle class along a stretch of roadway.

- State-of-the-art: train separate neural network models for each vehicle class.
- **Insight:** training separate models for each type of vehicle ignores generalizable information that is not explicitly modeled in the feature space.

## **APPROACH**

• We are focused on two specific scenarios faced by transit agencies managing mixed-fleets.

#### Scenario 1

- Transit agency operates many ICEVs, HVs and EVs.
- Goal: improve accuracy of forecasting energy (emissions) prediction for all tasks.
- Approach: MTL

#### Scenario 2

- Transit agency has a significant variation in the number of vehicles from each class.
- **Goal:** Learn model from task with sufficient data and transfer the learned abstraction to improve accuracy for class with insufficient data
- Approach: ITL



Fig. 2a – MTL Model

Fig. 2b – ITL Model

# DATA AND MODEL BASELINES

- Data collected over a 6 months with our partner agency the Chattanooga Area Regional Transportation Agency (CARTA).
- Vehicle telemetry data from ViriCiti and CleverDevices.
- Weather from DarkSky, traffic from HERE.
- Baseline models: vehicle-specific neural network models.

## MTL - EVALUATION

- Experiment 1: 80% train and 20% test, train 10 models and compare average improvement in MSE and MAE (Table 1).
- **Experiment 2:** 30 datasets generated through bootstrapping, get average bias per sample.

Table 1 - % improvement MTL vs baselines

| Vehicle<br>Type | MSE   | MAE  | Bias  |
|-----------------|-------|------|-------|
| ICEV            | 8.6%  | 6.4% | 5.1%  |
| HV              | 17.0% | 9.0% | 10.8% |
| EV              | 7.0%  | 4.0% | 1.0%  |

### ITL - EVALUATION

Table 2 - % improvement (MSE) when 2% of data available in target class

| _      |        |             |
|--------|--------|-------------|
| Source | Target | Improvement |
| ICEV   | HV     | 31%         |
| ICEV   | EV     | 13%         |
| HV     | ICEV   | 19%         |
| HV     | EV     | 22%         |

- Train model on full data available 2% 5% 10%15% in source domain. (d) HV  $\rightarrow$  EV
- Vary data available in target domain from 2% - 15%.
- Improved forecasting accuracy for all target classes when ICEV and HV used as source.

Negative transfer EV -> ICEV.



Fig. 3 - Average MSE compared to fract of data samples used for training in the target vehicle class (source -> target).

# **KEY FINDINGS**

- MTL improves prediction accuracy and reduces bias.
- ITL is most effective when data is limited in target class.
- EV energy (emissions) is harder to predict than HV and ICEV.
- Negative transfer when EV is source and ICEV is target, though this situation rarely arises in practice.