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UNDERSTANDING THE PROBLEM
• In U.S., transportation accounts for 35% of CO2 emissions and

28% of energy consumption. Public transportation is responsible
for 21.1 million metric tons of CO2 each year.

• For fixed line bus systems, adopting electric vehicles (EVs) and
hybrid vehicles (HVs) reduces greenhouse gas emissions and long-
term operational costs.

• However, EVs and HVs have high upfront costs and must be
integrated into existing diesel (ICEV) fleets.

• Therefore, most agencies are tasked with managing a mixed-
fleet of ICEVs, HVs and EVs.
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Fig. 2a – MTL Model Fig. 2b – ITL Model

APPROACH MTL - EVALUATION

ITL - EVALUATION

Vehicle 
Type

MSE MAE Bias

ICEV 8.6% 6.4% 5.1%
HV 17.0% 9.0% 10.8%
EV 7.0% 4.0% 1.0%

Source Target Improvement
ICEV HV 31%
ICEV EV 13%
HV ICEV 19%
HV EV 22%
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Fig. 1 – The energy prediction problem. The goal is to predict 
emissions (CO2) or energy (kWh) for each vehicle class along a 

stretch of roadway. 

• State-of-the-art: train separate neural network models for each
vehicle class.

• Insight: training separate models for each type of vehicle ignores
generalizable information that is not explicitly modeled in the
feature space.

• We are focused on two specific scenarios faced by transit
agencies managing mixed-fleets.

Scenario 1
• Transit agency operates 

many ICEVs, HVs and EVs.
• Goal: improve accuracy of 

forecasting energy 
(emissions) prediction for 
all tasks.

• Approach: MTL

Scenario 2
• Transit agency has a significant variation 

in the number of vehicles from each 
class.

• Goal: Learn model from task with 
sufficient data and transfer the learned 
abstraction to improve accuracy for 
class with insufficient data

• Approach: ITL

• Experiment 1: 80% train and 20% 
test, train 10 models and compare 
average improvement in MSE and MAE 
(Table 1).

• Experiment 2: 30 datasets generated 
through bootstrapping, get average 
bias per sample.

Table 1 - % improvement MTL 
vs baselines

DATA AND MODEL BASELINES
• Data collected over a 6 months with our partner agency the

Chattanooga Area Regional Transportation Agency (CARTA).
• Vehicle telemetry data from ViriCiti and CleverDevices.
• Weather from DarkSky, traffic from HERE.
• Baseline models: vehicle-specific neural network models.

• MTL improves prediction accuracy and reduces bias.
• ITL is most effective when data is limited in target class.
• EV energy (emissions) is harder to predict than HV and ICEV.
• Negative transfer when EV is source and ICEV is target, though this 

situation rarely arises in practice.

Table 2 - % improvement (MSE) 
when 2% of data available in 
target class

Fig. 3 - Average MSE compared to fraction 
of data samples used for training in the 
target vehicle class (source -> target).

• Train model on full data available 
in source domain.

• Vary data available in target 
domain from 2% - 15%.

• Improved forecasting accuracy 
for all target classes when ICEV 
and HV used as source.

• Negative transfer EV -> ICEV.
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