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Abstract  
Estimating fuel consumption by hybrid diesel buses is challenging due to its diversified operations 

and driving cycles. In this study, long-term transit bus monitoring data were utilized to empirically 

compare fuel consumption of diesel and hybrid buses under various driving conditions. Artificial 

neural network (ANN) based high-fidelity microscopic (1Hz) and mesoscopic (5-60 minutes) fuel 

consumption models were developed for hybrid buses. The microscopic model contained 1 Hz 

driving, grade, and environment variables. The mesoscopic model aggregated 1Hz data into 5 to 

60-minute traffic pattern factors and predicted average fuel consumption over its duration. The 

prediction results show mean absolute percentage errors of 1-2% for microscopic models and 5-

8% for mesoscopic models. The data were partitioned by different driving speeds, vehicle engine 

demand, and road grade to investigate their impacts on prediction performance.  
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1. Introduction  
Globally, the transportation sector consumes 83 trillion megajoules of energy and produces 5.7 

gigatons of greenhouse gas (GHG) emissions, along with other criteria pollutants, that contribute 

to 200,000 annual premature deaths (Frey, 2018). Public transportation may potentially reduce 

energy consumption by conveying larger passenger volumes in less space than private automobiles 

(White, 2016). Emerging technologies, including automation, internet of things, and the sharing 

economy enable innovations in transit operations, which provide greater potential in achieving 

sustainability goals in the transportation sector (Shen et al., 2018). However, public transportation 

service has high operational and capital costs due to its low occupancy rate. For example, in United 

States, the average operating and capital costs of the nation’s 10 largest bus systems are $0.85 and 

$0.16 per passenger mile, which are substantially higher than those of private automobiles, which 

are $0.11 and $0.14 per passenger mile1. According to United States Bureau of Transportation 

Statistics, fuel cost is approximately 20 percent of total transit operating costs (BTS, 2018). The 

non-plug-in electric hybrid bus has attracted attention from transit authorities, and its market share 

has been steadily increasing over the past decade (DOE, 2019). For brevity, the non-plug-in 

electric hybrid bus is referred to as the hybrid electric bus in this paper. A hybrid bus has a small 

battery and an electric motor on board, which can provide supplemental propulsion, particularly 

at low speeds with heavy traffic and frequent stop-and-go driving. Thus, changes in fuel 

consumption of a hybrid bus, as compared with conventional diesel buses, depend on the driving 

cycle, driving behavior, and energy management of the hybrid bus. Clark et al. (2009) showed 

improvements to fuel economy ranging from 16% to 48% for hybrid buses, when compared to 

diesel buses, based on different driving cycles. Therefore, to implement energy-saving operation 

of transit buses, accurate prediction models are needed to understand the fuel consumption 

behavior of hybrid buses. However, there is currently a knowledge gap regarding this 

understanding in the literature.  

1.1 Literature review 

In the literature, methodologies to estimate the fuel consumption of transit buses can be divided 

into summary or estimation models. Summary models focus on comparing trip or daily average 

 
1 The data is obtained from the website http://www.portlandfacts.com/cost_of_transit_&_cars.html, accessed on 
September 28th, 2020. 
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fuel consumption of transit buses based on in-use or simulated data. Zhang et al. (2014) and Wu 

et al. (2015) tested several types of buses, including conventional diesel, natural gas, and diesel 

hybrid, in Beijing and Macao, using portable emission measurement systems (PEMS). They found 

that hybrid diesel buses can achieve reductions of 18-29% in fuel consumption. Though not 

studying hybrid buses, Holmén and Sentoff (2015) is one of the few studies that compares the fuel 

consumption of a hybrid electric passenger car to an internal combustion car with the same chassis 

under real-world driving, and they defined a “benefit” factor of the hybrid car for each vehicle 

specific power bin. In addition to laboratory tests, some researchers summarized the fuel benefits 

of hybrid electric buses using the simulation-based method (Lajunen, 2014; Taymaz and Benli, 

2014). Choi and Frey (2010) developed a methodology that provided comparisons of high-

resolution fuel use and emission characterization of a hybrid diesel school bus and a conventional 

diesel bus. They summarized fuel use and benefits of hybrid buses under five driving cycles. They 

found that the hybrid bus provided large fuel benefits on arterial routes but fewer benefits on 

highway or local routes. While this study is relevant, it was conducted approximately 10 years ago, 

and recent technologies must be incorporated in assessments of the fuel benefits of hybrid buses. 

Additionally, these summary models do not explore statistical relationships between fuel 

consumption and influencing variables but rather depend on a large number of measurements to 

ensure statistically robust results. 

 
Estimation models refer to fuel consumption predictions of transit buses using different types of 

statistical models and with different degrees of granularity.  Linear or nonlinear regression-based 

prediction methodologies are most popular in the literature, particularly for diesel bus fuel 

estimation. Tang et al. (2016) and López-Martínez et al. (2017) adopted a regression model with 

categorical, independent variables based on time of day, time of week, and road type to predict 

fuel rate of buses in different countries. Wang and Rakha (2017) developed quadratic format fuel 

consumption models for diesel and hybrid buses. They found that buses achieved their lowest rate 

of fuel consumption when they were cruising at speeds between 39 to 47 km/h within grades of 0-

8%. The rate of fuel consumption increased with higher grade and load. Some studies developed 

advanced and machine learning-based models. Advanced prediction methods, such as neural 

network or support vector machine, have been used in the literature to predict fuel and emissions 
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of diesel buses (Wang et al., 2018; Zeng et al., 2015), but few studies have focused on hybrid 

buses.   

1.2 Contribution of the work 

The literature review demonstrates a need to develop fuel consumption estimation models for 

hybrid buses based on long-term, in-use experiment data. A high-resolution fuel prediction model 

for hybrid diesel buses can enable transit operators to improve their planning and bus operations 

to achieve their fuel savings and sustainability goals. In this study, we propose artificial neural 

network (ANN) based fuel consumption estimation models that utilize real-world operation data 

with 1Hz granularity to achieve accurate predictions of microscopic and mesoscopic fuel 

consumption of hybrid diesel buses. Specifically, the microscopic model utilizes second-level 

vehicle trajectories to predict fuel consumption rate of hybrid diesel buses at 1Hz frequency. The 

mesoscopic model estimates average fuel consumption rate at 5, 15, 30, and 60-minute durations 

based on aggregated traffic pattern factors. In addition, fuel consumption differences between 

hybrid and diesel buses and potential influencing factors are assessed. We acknowledge that the 

developed model and estimation coefficients obtained in this study are specific to the studied fleet 

and region. However, the ANN estimation model framework is applicable to different fleets in 

other regions if similar transit bus measurement data are available.  

 

2. Material and Methods 

2.1 Experiment Setup and Input data 

The data used in this study are 1Hz driving and fuel consumption measurements recorded by on-

board sensors on one diesel transit bus and one hybrid non-plug-in electric transit bus between 

March 2019 and March 2020. The buses are in the transit operating fleet of the Chattanooga Area 

Regional Transportation Authority (CARTA). They were manufactured by Gillig Brothers Inc. 

Table 1 summarizes the specifications of the diesel and hybrid buses.   

 
Table 1. Chassis and Engine Information for Gillig Model Year 2014 Diesel and Hybrid Buses 

Characteristic Diesel Bus Hybrid Bus 
Seat Capacity 32 seats 32 seats 
Model year 2014 2014 
Hybrid architecture N/A Parallel 
Powertrain Engine: Cummins ISL  Engine: Cummins ISB  
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Motor: Allison H40EP 
Powertrain Power 264 kW 261 Kw (209 kW for 

engine) 
Energy Storage System 
Weight 

N/A 440 kg 

Curb weight 11,600 kg 12,400 kg 
 
The collected data were 1Hz frequency real-time location coordinates (i.e. latitude, longitude), 

elevation, ambient temperature, vehicle dynamics (instantaneous speed and acceleration), and fuel 

consumption rate. Data on vehicle dynamics and fuel consumption were obtained by gathering 

information with the vehicle’s control area network bus (CAN bus) using a data logger called 

Datahub developed by ViriCiti Inc2, which complies with the Society of Automotive Engineers 

J1939 standard. The data logger contained an accelerometer to measure instantaneous speed and 

transform the location to longitude and latitude coordinates. The temperature was obtained through 

query Dark Sky API weather data3. The elevation data were queried through elevation databases 

according to instantaneous bus coordinates. The elevation database was provided by the Tennessee 

elevation LiDAR project, which is a coordinated effort with the United States Geological Survey. 

The Tennessee Elevation LiDAR database provides elevation data and the majority of GPS 

locations (with 1-2 foot contour) in State of Tennessee (TN, 2020). Based on the elevation data, 

the road grade of each 1Hz measurement is calculated by dividing the elevation difference between 

current and previous measurements by the driving distance. We have to acknowledge that there 

are limitations on using geographic information system data to calculate road grade, because road 

grade normally does not match the general slope of the land. Particularly, major roads are 

constructed to reduce grade if the terrain is hilly. We use the road grade data based on Tennessee 

Elevation LiDAR database, but will look for better road grade data if they are available. The 

driving data are collected from transit buses running on all routes operated by CARTA, as shown 

in Figure 1 (a), and typical driving trajectory for each route is presented in Figure (b). The routes 

represent typical mountainous terrain patterns in the region, which is surrounded by the Tennessee 

River and the ridge-and-valley Appalachians. The driving cycles have speeds up to 40-50 kph and 

an acceleration range of -2 to 2 meter per second. 

  

 
2 ViriCiti Inc. DataHub. https://viriciti.com/datahub/ 
3 Dark Sky Weather API. https://darksky.net/dev/docs 
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(a) 

 
(b) 

 
Route Length (km) Route Length (km) Route Length (km) 

1 10.3 10a 14.6 16 23.2 
2 10.6 10c 29.0 19 38.9 
4 19.1 10g 9.5 21 8.4 
7 5.6 13 12.6 28 26.1 
8 8.7 14 9.3 33 3.9 
9 17.7 15 10.1     

(c) 
Figure 1. Route map (a), typical driving trajectories for bus routes (b), and route length (c) of 
Chattanooga Area Regional Transportation Authority (CARTA, 2020).  
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3 Comparison of fuel consumption of hybrid and conventional diesel buses  
In Figure 2, the distribution of amount of time spent in vehicle specific power (VSP), speed, and 

road grade bins for diesel and hybrid buses are compared. VSP is an evaluation metric for vehicle 

energy consumption and emissions. As stated in Jimenez-Palacios (1998), “it is the sum of loads 

resulting from aerodynamic drag, acceleration, rolling resistance, and hill climbing, all divided by 

the mass of the vehicle”. VSP is calculated by dividing the instantaneous power for kinetic, 

potential, rolling, and aerodynamic resistance by vehicle weight,  

𝑉𝑆𝑃 =
𝑑
𝑑𝑡 (𝐾𝐸 + 𝑃𝐸) + 𝐹!"##$%& ∗ 𝑣 + 𝐹'(!")*%+,$- ∗ 𝑣	

𝑚
=
𝑑
𝑑𝑡 1

1
2𝑚 ∗ (1 +∈$) ∗ 𝑣. +𝑚 ∗ 𝑔 ∗ ℎ7 + 𝐶/ ∗ 𝑚 ∗ 𝑔 ∗ 𝑣 + 12 𝜌 ∗ 𝐶0𝐴𝑣

1

𝑚
 

= 𝑣 ∗ (𝑎 ∗ (1 + 𝜖$) + 𝑔 ∗ 𝑔𝑟𝑎𝑑𝑒 + 𝑔 ∗ 𝐶/) +
2
.
𝜌 3!'

,
𝑣^3                                                              

The unit for VSP is kW per ton. VSP is considered to be a surrogate measurement for the 

instantaneous power demand of a vehicle normalized to its own weight and has been used in recent 

literature (Chen et al., 2017; Frey et al., 2007). Figure 2 show similarities in driving status and 

road grade conditions for the diesel and hybrid buses.  

 
Figure 2. Vehicle specific power, speed and road grade distribution comparison of diesel and 
hybrid driving. 

 
Figure 3 shows the average fuel consumption rates of diesel and hybrid buses as a function of 

instantaneous VSP with 1kW/ton interval. VSP measures a vehicle’s tractive power normalized to 

its own weight. Thus, the comparison in Figure 3 accounts for the difference in the weight of 

hybrid and diesel buses. Each average fuel consumption rate was averaged over at least 2,000 

instantaneous measurements to ensure statistical robustness. The results show a positive 

relationship between VSP and the bus fuel consumption rate. However, the slope of the curves 

decreases when VSP is greater than 15 kW/ton. This observation is expected and is consistent with 



  8 

previous studies (Wang and Rakha, 2016; Zhang and Yao, 2015). Similar patterns of fuel savings 

for hybrid buses were observed in other studies (Wayne et al., 2004; Wu et al., 2014).  

 
Figure 3. Mean fuel rate (liter per hour) and 95% confidence interval (shaded area) for diesel and 
hybrid bus as a function of instantaneous vehicle specific power bins from 0 to 18 kW/ton with 1 
kW/ton interval.  

 
Figure 4 reports the percentage of fuel savings for hybrid buses compared with diesel buses, 

accounting for driving speed and VSP. The results are controlled in three speed categories: 1) 1 to 

40 kph (equivalent to 25 miles per hour), 2) 40 to 80 kph (equivalent to 50 miles per hour), and 3) 

above 80 kph. These three categories correspond to typical local, arterial, and highway driving 

conditions. This categorization is consistent with that used in MOVES, a widely used model for 

vehicle energy and emission analysis (US EPA, 2010). Figure 4 shows that the fuel benefits of 

hybrid buses vary, depending on driving conditions. For local driving (speeds up to 40 kph), the 

fuel savings for hybrid buses increase linearly as the VSP increases. The fuel savings could be as 

little as 0% at low VSP (5 kW/ton) or as high as 70% at high VSP (17 kW/ton). In local driving, 

the high VSP typically represents aggressive acceleration from stop or low speeds during heavy 

traffic or from bus stops. Under arterial driving conditions (speeds between 40 and 80 kph), hybrid 

buses have the same fuel efficiency as the diesel buses until the VSP is greater than 15 kW/ton. At 

a VSP of 18 kW/ton, the fuel savings are approximately 10%. The high VSP in arterial driving 

typically corresponds to aggressive acceleration to avoid heavy traffic. For highway driving, the 

fuel efficiency of hybrid buses is worse than diesel buses when VSP is greater than 5 kW/ton. 

However, steady highway driving does not appear to account for drivers that are “dithering” the 
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pedal, which would result in vibrative power demand and create charging opportunities for hybrid 

buses. Very high-resolution speed data are needed to perceive the “dithering” effect, which may 

be a direction for future data collection and research. Holmen and Sentoff (2015) found that the 

fuel consumption for a hybrid gasoline passenger car is 5-20% worse than a comparable gasoline 

car under highway driving conditions with a VSP greater than 10 kW/ton. Choi and Frey (2010) 

showed that a parallel hybrid diesel school bus reported 3-9% worse fuel consumption rates than 

a comparable conventional diesel school bus under highway and arterial driving conditions.  

 

 
Figure 4. Fuel savings of hybrid buses as compared with diesel buses by driving speed and 
instantaneous vehicle specific power bins.  

4 Development of a fuel consumption prediction model 

This study aims to develop ANN-based models for predicting fuel consumption rates for hybrid 

diesel transit buses at the microscopic and mesoscopic levels. In the microscopic model, the fuel 

rate (liters per hour) is estimated based on velocity, acceleration, and road grade, as well as other 

vehicle and road characteristics factors at 1Hz frequency. In the mesoscopic model, fuel estimates 

are based on aggregated traffic pattern information for trip durations of 5, 15, 30, and 60 minutes. 

As shown in Figure 5, the model development and applications are illustrated in three modules. In 

the 1st module, which is referred to as “data preparation.”, vehicle trajectory and fuel consumption 

data at 1Hz frequency are collected and processed into 5, 15, 30, or 60-minute trip duration average 

metrics. In the “model development” module, artificial neural network models are built for 1Hz 

data and aggregated data at different trip durations to estimate the fuel rates of hybrid buses. In 

each model, the dataset was divided into datasets of training, validation, and testing. Training data 
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was used to fit a prediction model. The validation set was used to perform parameter/model 

selection and to cope with overfitting, which is considered part of the training process. The testing 

set was used to evaluate model performance. The prediction results were at the same time 

resolution of the input data, as prepared in “data preparation” module. Finally, in the “model 

application” module, the developed models can be applied at different time resolutions with 

various input variables, depending on the specific applications. This approach provided flexibility 

in model application, particularly given that users have varying degrees of access to the input data. 

     
Figure 5. Flowchart of the main tasks 

4.1 Data preparation 

The microscopic model predicts fuel consumption rate (liters per hour) using vehicle 

speed/velocity, acceleration, road grade, ambient temperature, and VSP at 1Hz frequency as the 

input variables. To prepare mesoscopic models, the collected 1Hz data are processed into 11 

independent variables and the predicting variable, i.e. fuel consumption rate (liter per 100 

kilometer), as shown in Table 2. The ability to capture temperature data was helpful for both 

microscopic and mesoscopic models to infer fuel consumption used for air conditioning, since all 

the buses in this study were not equipped with a heating burner. Passenger load can influence the 

fuel consumption of buses, particularly under heavy load conditions (Liu et al., 2019). However, 
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passenger load information was not included in the data that was collected for this study. However, 

obtaining this information may be a future direction for data collection and future research.  

  
Table 2. Description of mesoscopic model input data 

Symbols Descriptions 
𝑛 The index of analysis snippet 
𝑇 The time span of an analysis snippet (i.e. 5min, 15min, 30min, 60min) 
𝑡 The index of second in an analysis snippet, t={1,2,…, T} 
𝑑AB The cumulative distance at second t of snippet n (kilometer) 
𝑣AB The instantaneous speed at second t of snippet n (kilometer / hour) 
𝑓B The cumulative fuel consumed at the end of snippet n (liter) 
�̅�B The average speed of snippet n (kilometer / hour) 
𝑣𝜎B The standard deviation of speed in snippet n  
𝑎*B The average acceleration of snippet n (meter / second2) 
𝑎AB The instantaneous acceleration at second t of snippet n (meter / second2) 
𝑎𝜎B The standard deviation of acceleration in snippet n  
𝑉𝑆𝑃AB The vehicle specific power at second t of snippet n (kW/Metric Ton) 
𝑙AB The elevation of vehicle at second t of snippet n (meter) 
𝑔AB The road grade at second t of snippet n (%) 
𝑔𝜎B Standard deviation of road grade at second level in snippet n 
𝑔B The road grade at snippet n (%) 
𝑠AB The driving status index of a bus at second t of snippet n, 1=moving, 

otherwise 0  
𝑞B The total number of stop-and-go driving events in snippet n  
𝑠B Percentage of time in stop position during snippet n 
𝑤AB The ambient temperature at second t of snippet n (℉) 
 𝑟B Average fuel consumption rate in snippet n (liter per 100 kilometer) 

 
(1) Average speed (kilometer/hour) in snippet n:  �̅�B = C!

"DC#"

E
, ∀	𝑛 . 

(2) Standard deviation of speed in snippet n: 	𝑣𝜎B =
F∑ (H$

"DHI")%!
$&#

EDJ
 . 

(3) Average acceleration (meter/second2) in snippet n:  𝑎*B = ∑ (H$
"DH$'#

" )!
$&%

EDJ
= H!

"DH#"

EDJ
. 

(4) Standard deviation of acceleration in snippet n:  𝑎𝜎B =
F∑ (K$

"DKI")%!
$&#

EDJ
. 

(5) Stop-and-go times in snippet n:  𝑠𝑔B = ∑ |𝑠AB − 𝑠ADJB |E
ALM . 

(6) Stop rates in snippet n:  𝑠B = ∑ N$
"!

$&#
E

. 

(7) Average ambient temperature (℉) in snippet n:  𝑤;B = ∑ O$
"!

$&#
E

. 
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(8) Average road grade at second level in snippet n:  �̅�B = ∑ P$
"!

$&#
E

. 

(9) Standard deviation of road grade at second level in snippet n: 𝑔𝜎B =
F∑ (P$

"DPI")%!
$&#

EDJ
. 

(10) Road grade in snippet n: 𝑔! = 𝑙𝑇
𝑛−𝑙1

𝑛

𝑑𝑇
𝑛−𝑑1

𝑛. 

(11) Average Vehicle Specific Power (VSP) (kW/Metric Ton) in snippet n: 𝑉𝑆𝑃******B = ∑ STU$
"!

$&#
E

,	

where, 𝑉𝑆𝑃AB = 𝑣AB(1.1𝑎AB + 9.81𝑔AB + 0.132) + 3.02 × 10DV(𝑣AB)W, with 𝑣AB	in 

meter/second and 𝑎AB in meter/second2, (Jimenez-Palacios, 1998). 

(12)  Fuel used rate in snippet n:   𝑟B = X"DX"'#

C!
"DC#"

, ∀	𝑛, 𝑓Y = 0.	 

4.2 Artificial Neural Networks Development 

The artificial neural network (ANN) approach was employed to estimate fuel consumption rates 

using the prepared data. An ANN model processes information in the same way that the human 

brain processes information (Hassoun, 1995). Specifically, an ANN model contains input, along 

with hidden and output layers, and each layer contains data processing components called neurons. 

These neurons or processing components are connected to each other and can form complex 

nonlinear models through activation functions. The activation function determines the value of the 

neurons in the next layer or the output, based on values and coefficients of neurons in the current 

layer. Thus, the ANN model can identify the relationship between input and output variables by 

exploring different forms and weight combinations of neurons in the input and hidden layers, 

which makes the ANN model a perfect candidate model to be used in this study. For example, a 

previous study showed that air conditioning (AC) loads in buses can consume significant amounts 

of energy (Wayne et al., 2004). However, the measurement data did not include AC auxiliary 

power. To account for AC loads in fuel consumption, ambient temperature is included as an input 

variable in the estimation model. The relationship between temperature and fuel consumption of 

buses is not a linear relationship, but a convex quadratic relationship with higher fuel consumption 

at high and low ends of the temperature spectrum. Thus, the ANN model is capable of representing 

complex nonlinear relationships.  

The activation function is responsible for transforming the set of neurons in one layer into a given 

neuron or output in the next layer. There are two major types of activation functions: the nonlinear 

activation function and the linear activation function. Nonlinear activation functions allow neural 
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network models to represent complex relationships using only a small number of input variables. 

Therefore, several major types of nonlinear functions were tested to identify the functions that 

maximize the predictability of the model. These functions are the sigmoid function ( J
JZ['+

) , the 

tanh-sigmoid function ( M
JZ['%+

− 1), and the rectified function (max	{0, 𝑥}).  

 
Due to severe computations on the high dimensional data when training the ANN models, it is a 

common practice to scale input data using normalization, 𝑥\ =
],D^_`	(])

^ab(])D^_`	(])
 , where xi is the 

observation for the parameter, and min(x) and max(x) are the minimum and maximum 

observations, respectively. Clearly, the performance of an ANN model depends on its 

configuration. Selecting more hidden layers may increase the accuracy of the network but can 

increase training time due to its complexity and may result in overfitting. Karsoliya (2012) proved 

that a neural network with up to two hidden layers is sufficient to represent complex, nonlinear 

relationships. Moreover, the experimental results in this paper reveal that the first and second 

hidden layer should contain an equal number of neurons so that the network can be trained easily. 

The number of neurons in hidden layers are generally determined by using a trial-and-error method 

(Maier and Dandy, 2001). A frequently used upper limit for the number of neurons in a hidden 

layer is 	𝑁c ≤ 2𝑁\ + 1, where 𝑁c  is the number of neurons in the hidden layers, and 𝑁\  is the 

number of input variables (Maier and Dandy, 2001). Additionally, Rogers and Dowla (1994) 

recommend 𝑁c ≤
T$

d,ZJ
, where 𝑆A is the sample size of the training data, to avoid overfitting. In this 

study, the minimum of the two 𝑁c is chosen as the upper limit for the number of hidden layer 

neurons. To get the best approximation of the hidden layer neurons, the number of neurons can be 

reduced, and training is done to determine whether the network converges to the same solution. 

 
The measurement data are randomly partitioned into training, validation, and testing datasets as 

70%:15%:15% (Taylor, 2006). Specifically, an ANN model is trained using the training set. Then, 

before testing for prediction performance, training progress is monitored by using independent 

data, i.e. the validation set, to measure how well the neural network is generalizing outside of the 

training set. Only models that satisfy our prediction performance threshold on the validation set 

will be chosen and used for predictions using the test set.  
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5. Results and discussion 

5.1. Microscopic model selection and prediction performance 

Data that are collected at 1Hz frequency are considered to be independent variables in the 

microscopic model. These data include engine speed, wheel-based speed, acceleration, road grade, 

ambient temperature, and VSP. The best model yields a mean absolute percentage error (MAPE) 

of 36%, R2 of 0.96, and a mean absolute error (MAE) of 1.5 liters per hour, although there are 

several model setups that have similar prediction performance metrics. The prediction metrics are 

calculated by comparing the predicted and actual fuel consumption of each 1Hz record. Then, the 

results are averaged or aggregated to obtain the metrics. Figure 6 compares actual and estimated 

fuel consumption rates (liters per hour) at every second for one randomly chosen trip. The results 

show a general alignment between the actual and estimated fuel consumption rates. However, 

estimation randomness can lead to larger absolute percentage errors at small (i.e., small 

denominator when calculating the percentage error) fuel consumption rate occurrences. Therefore, 

the MAPE of 36% for the 1Hz level prediction is primarily determined by errors at small fuel 

consumption occurrences.    

 
Figure 6. Second by second actual fuel consumption rate (liter per hour) versus estimated fuel 
consumption rate for one trip.  
 

The fuel consumption predictions are accumulated into 5, 15, 30, 60-minute average fuel 

consumption rates and compared with actual values. We acknowledge that evaluating the 

microscopic model using cumulative error over a trip could overlook variations in prediction error 

at the 1Hz level. Since the targeted user scenario of the proposed models is transit operation 

planning, the focus was on trip level results, although the prediction was done at 1Hz level.  
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Table 3. Description of Microscopic level ANNs Configuration Selection Process. 

Hidden layers 
Neurons 

MAE (liter/hour) MAPE (%) R2 1st layer  2nd layer  
1 13 (sigmoid)  1.6 38 0.95 

1 (rectified)  2.4 72 0.92 
2 13 (sigmoid) 13 (rectified) 1.6 36 0.95 

11 (tanh) 11 (sigmoid) 1.5 36 0.96 
1 (rectified) 1 (sigmoid) 2.2 71 0.93 

* The results are just for illustration rather than listing all tested microscopic models. 

Trips are formed by aggregating the continuous 1Hz data with equal time durations of 5, 15, 30, 

60-minute. Each 1Hz record contained the actual and predicted fuel consumption from our 

microscopic model. For each trip, the fuel consumption over the 5, 15, 30, 60-minute durations 

was aggregated over actual/predicted values and compared to obtain the absolute percentage error 

of the prediction. Figure 7 presents a boxplot of the absolute percentage error (%) for the 

microscopic model at aggregated levels. It shows that when fuel predictions are aggregated 

between 5 to 60 minutes, the mean absolute percentage error reduces as the trip duration increases. 

However, the MAPEs were near or below 2%, which demonstrated the capability of the 

microscopic model to predict 1Hz fuel consumption rates and achieve high accuracy at 5 to 60-

minute trip levels.  
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Figure 7. Boxplot of absolute percentage error for microscopic model predictions aggregated at 5, 
15, 30, 60 minutes. The bar within each box represents the median absolute percentage error and 
the two sides of box correspond to 1st and 3rd quartiles. The diamond (with number) in a box is the 
mean value.  
 
Figure 8 compares the absolute percentage prediction error for the ANN model and the non-
neural network linear regression model as a function of trip duration (left) and instantaneous 
vehicle specific power (right). For Figure 8 (right), the measured and predicted fuel consumption 
data at 1HZ were averaged based on each VSP bins from 0 to 15 kW/ton to report prediction 
error. The MAPE and confidence intervals of the ANN model were consistently lower than those 
of the linear regression model, although the differences seemed to diminish as the trip duration 
increased.  Specifically, the MAPE of the ANN model was consistently near 2%, while it was 
reduced from 6% to 2% for the linear regression model when the trip duration increased from 5 
to 60 minutes. This reduction was expected, as shorter trip durations typically constitute more 
dynamic traffic and driving conditions. Thus, the ANN model can capture changes in fuel 
consumption more effectively using complex model formats. When accounting for VSP, the 
ANN model outperformed the linear regression model in all of the VSP bins. The improvements 
in prediction error are significant in low VSP areas (VSP < 3 kW/ton) for the ANN model.  
 

Trip Duration (Minutes)



  17 

     
       
Figure 8. Mean absolute percentage error and 95 percentage confidence intervals for predictions of 
artificial neural network (ANN) model and linear regression model with the same independent 
variables as a function of trip duration (left) and vehicle specific power (right). 
 
 

5.2. Mesoscopic model selection and prediction performance 

The mesoscopic model predicts fuel rates over a time period based on aggregated traffic pattern 

factors. Different model configurations were compared to determine the best prediction model 

(Table 4). The best model yielded a MAPE of 8.9%, R2 of 0.91, and a MAE of 4.0 liters per 100 

km. The prediction metrics were calculated by comparing predicted and actual fuel consumption 

per km of each 5-minute trip. The average fuel consumption rate was 45 liters per 100 km, i.e. 5.2 

miles per gallon, which is consistent, in terms of magnitude, with the average fuel consumption 

rate for diesel hybrid buses reported by Clark et al. (2009). 

 
Table 4. Description of Mesoscopic Level ANNs Configuration Selection Process. 
Hidden layers Neurons MAE (liter/ 100 km) MAPE (%) R2 

1st layer  2nd layer  
1 23 (tanh)  4.2 9.4 0.84 

 6 (sigmoid)  4.0 8.9 0.91 
1 (rectified)  5.1 11.4 0.85 

2 23 (rectified) 23 (sigmoid) 4.3 9.6 0.86 
1 (sigmoid) 1 (tanh) 5.7 12.6 0.79 

 

Figure 9 (left) presents boxplots of absolute percentage error (%) for the mesoscopic model at 5, 

15, 30, 60-minute trip durations. Similar to the microscopic model, the MAPE of the mesoscopic 

model generally decreases as the trip time increases; however, it remains flat when the trip time is 

greater than 30 minutes. Figure 9 (right) evaluates the prediction error as a function of speed for 
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each trip duration by differentiating trips by speed ranges of 1-40 kph and 40-80 kph for each trip 

duration. The former trips correspond to typical urban driving, while the latter trips represent a 

combination of driving under urban, arterial, and highway conditions. There are limited data points 

to develop robust statistics on travel with an average speed of 40+ kph for 30 and 60-minute trips. 

This lack of data is understandable, given that the average speed of a transit bus in the United 

States is 22 kph (Hughes-Cromwick, 2019). As a result, a limited number of 30 or 60-minute trips 

would achieve average speeds above 40 kph. The MAPEs of 40-80 kph trips were higher than 

those of trips below 40 kph for 5 and 15-minute trips. Thus, higher uncertainty exists when 

predicting fuel consumption at high speed driving, which normally consists of a combination of 

urban, arterial, and highway driving.  

   
Figure 9. Boxplot of absolute percentage error for mesoscopic model predictions at 5, 15, 30, 60-
minute trip duration (left) and discriminating by speed category (right). The bar within each box 
represents the absolute percentage error and the two sides of box correspond to 1st and 3rd 
quartiles. The diamond (with number) in a box is the mean value.  
 
The mesoscopic model is based on eleven independent variables that are averaged at different trip 

durations to predict the fuel consumption rate of hybrid buses. Clearly, models with more input 

variables would result in stronger correlations with output variables and yield better prediction 

performance. However, due to challenges in data collection, the eleven variables may not be 

readily available. In this study, we explore the impacts of data availability on the performance of 

mesoscopic prediction models. First, three scenarios are established, which represented three 

levels of data availability. “Scenario 1” contained only the average speed variable, which is the 

minimum data requirement. This scenario is applicable because the average speed of a road 

Trip Duration (Minutes)

Trip Duration
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network is regularly monitored by transportation authorities. “Scenario 2” contained average speed 

and road grade variables. This scenario combines traffic data and infrastructure data that are 

normally available to transportation practitioners.  “Scenario 3” contained the eleven independent 

variables. For each scenario, model selection procedure is conducted and the optimal model 

configuration is presented in Table 3. A higher MAPE was expected for scenarios with less input 

variables. The single input variable, Scenario 1, had a MAPE of 14%, which was the largest. 

Studies have used average speed as the sole piece of information to predict fuel consumption of 

vehicles, such as the Motor Vehicle Emission Simulator (US EPA, 2010) and Barth and 

Boriboonsomsin (2008). However, a few recent studies have adopted single input variable 

prediction models, due to concerns regarding prediction accuracy (Chen et al., 2017). The MAPE 

of the best model in Scenario 2 is 12%. The speed and road grade variables in Scenario 2 have 

been used in recent studies (Cuma and Koroglu, 2015; Sun et al., 2015; Zhang and E Yao, 2015). 

Specifically, speed and road grade can be used to calculate VSP, which is an effective proxy for 

vehicle power demand (Jimenez-Palacios, 1998).  

 
Table 3. Comparison of optimal ANN model configurations under different data availability 
scenarios. 

 Neurons 
MAE (liter/100 km) MAPE (%) R2 

1st layer 2nd layer 
Scenario 1 2 -- 6.3 14 0.77 
Scenario 2 4 -- 5.4 12 0.82 
Scenario 3 6 -- 4.0 8.9 0.91 

 
Figure 10 compares the MAPE of fuel consumption estimates at 5, 15, 30, and 60-minute duration 

for the three scenarios in the mesoscopic and microscopic models.  Within each scenario, it is 

observed that using data with longer trip durations led to improved prediction performance. This 

finding was expected because averaging longer time periods can reduce noise in data, which can 

improve prediction accuracy. However, averaging data into longer periods is not necessarily a 

better practice. The mean absolute percentage errors of the microscopic model were less than 2%. 

However, the extra effort to obtain detailed trajectory data must be balanced with improvements 

in prediction accuracy to justify the use of the microscopic model.  
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Figure 10. Mean and 95 % confidence (shared area) absolute percentage error for microscopic and 
three scenarios of mesoscopic models as a function of trip duration.  

 
Relevant literature on fuel consumption estimation of transit buses are reviewed and their input 

variables and model setup are summarized in Table 4. Those models used input data at either 1Hz 

or trip-average granularity. The prediction outputs were liters per hour for 1Hz level prediction or 

trip-average fuel consumption rate (liters per kilometer). The input data (1Hz and 5-minute average 

granularity) from this study were applied to models from the literature to compare their prediction 

performances with our models. Table 4 summarizes the comparison results. The MAPEs of trip-

level models from the literature ranged from 12% to 22%, which are consistent with the MAPEs 

reported in the literature using their data. The MAPEs of our models are between 5% to 8%. Three 

out of the four trip-level models in the literature utilized linear regression-based methods. The 

other models used the supporting vector machine (SVM) method and reported a MAPE of 12%. 

The two 1Hz microscopic models adopted quadratic and exponential regression methods and 

resulted in MAPEs of 47% and 59%, respectively, which were also aligned with results in their 

studies. If the 1Hz prediction results are aggregated into 5 to 60 minutes, their MAPEs are between 

5% to 9%. The comparison shows the potential of the ANN model to accurately predict the fuel 

consumption of buses under real-world driving conditions. 
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Table 4. Comparison with fuel consumption estimation models in literature. 
 Method type Input variables Granularity MAPE 

This study ANN Speed (average), 
acceleration, grade, 
temperature 

Trip  
5-8% 

Frey et al. (2007) Regression-Linear VSP  Trip   12% 
Delgado et al. (2011) Regression-Linear Speed (average), 

acceleration 
Trip   22% 

López-Martínez et al. (2017) Regression-Linear Speed (average, max), 
acceleration 

Trip   18% 

Zeng et al. (2015) SVM Speed (average, 
variance) 

Trip   12% 

This study ANN Speed, acceleration, 
grade, temperature,  

1Hz 36% (1Hz) 
1-2% (aggr. at 5-60 min) 

Wang and Rakha 
(2016,2017) 

Regression- 
quadratic 

VSP 1Hz 47% 
4-8% (aggr. at 5-60 min) 

Hung et al. (2005) Regression-
Exponential 

Speed 1Hz 59% 
6-9% (aggr. at 5-60 min) 

 

6 Conclusion 
Hybrid buses have gained popularity in recent years due to their potential savings in transportation 

fuel. Estimating fuel consumption for hybrid diesel buses is challenging because its operation and 

driving conditions are diversified. In this paper, we proposed ANN microscopic and mesoscopic 

models to estimate fuel consumption of hybrid diesel buses based on long-term transit bus 

monitoring data collected from CARTA. The microscopic model predicted instantaneous fuel 

consumption rates based on driving, grade, and environment variables at the same frequency. The 

ANN-based microscopic model results showed 1-2% of cumulative absolute error when 

aggregating second level results to 5 to 60-minute trips. The results showed that ANN models can 

achieve lower error, compared to linear regression models, using with the same input variables. 

The mesoscopic model predicted average fuel rates for 5 to 60-minute trip durations based on 

traffic factors for the same period. Our results show that the absolute prediction error for 

mesoscopic models ranged between 5 and 9%. This range is higher than that of the microscopic 

model; however, the independent variables of the mesoscopic model, e.g. average traffic speed, 

congestion level, etc., are typically monitored by local transportation authority. The experimental 

data contained 1Hz data of hybrid and diesel buses that have similar driving conditions in terms 

of speed, engine demand, and road grade. Our investigation of fuel rate showed that hybrid buses 

have the largest fuel savings during low speed driving with high acceleration and none or increased 
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fuel consumption during highway driving. The electric motor of hybrid buses normally engages to 

supplement or replace a portion of propulsion provided by the diesel engine at low speed driving 

with high acceleration, which can help achieve better fuel efficiency. Similar fuel savings were 

observed in hybrid passenger car experiments that can be found in the literature. One limitation of 

this study is that the experiment did not collect operational data for electric motors within the 

hybrid bus. Therefore, we could not fully understand the energy management system mechanism 

within the hybrid bus. One future research direction may be to collect and leverage electric motor 

operation data from hybrid buses to better understand their fuel saving mechanism. Another future 

research direction may be to collect passenger load information on buses and assess the impacts 

of passenger load on the fuel consumption of hybrid buses under real world driving conditions.   
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