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ABSTRACT 1 
Reliable and accurate estimation of electric bus energy consumption is critical for electric bus operation 2 
and planning. But energy prediction for electric buses is challenging because of diversified driving cycles 3 
of transit services. We propose to establish a data-partition based artificial neural network model to 4 
predict energy consumption of electric buses at microscopic level and link level. The purpose of data 5 
partitioning is to separate data into charging and discharging modes and then develop most efficient 6 
prediction for each mode. We utilize a long-term transit operation and energy consumption monitoring 7 
dataset from Chattanooga, SC to train and test our neural network models. The microscopic model 8 
estimates energy consumption of electric bus at 1Hz frequency based on instantaneous driving and road 9 
environment data. The prediction errors of micro model ranges between 8% and 15% on various 10 
instantaneous power demand, vehicle specific power, bins. The link-level model is to predict average 11 
energy consumption rate based on aggregated traffic pattern parameters derived from instantaneous 12 
driving data at second level. The prediction errors of link-level model are around 15% on various average 13 
speed, temperature and road grade conditions. The validation results demonstrate our models’ capability 14 
to capture impacts of driving, meteorology and road grade on electric bus energy consumption at different 15 
temporal and spatial resolution.  16 
 17 
Keywords: Electric bus, Artificial neural network, Energy consumption prediction   18 
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INTRODUCTION 1 
Globally, the transportation sector consists of 1.3 billion on-road vehicles and consumes 79 2 

quadrillion BTU of energy, which emit 5.7 gigatonnes of CO2, and emit other pollutants that contribute to 3 
200,000 annual premature deaths (1). Transportation authorities are employing a portfolio of strategies to 4 
mitigate GHG emissions and their dependence on fossil fuels (2–4). Public transportation is considered 5 
one important strategy because of its benefits in conveying larger passenger volume in much less space 6 
than individual automobiles (5). Specifically, electrification of public transportation is a promising 7 
approach promoted by industry, public agencies and research communities in solving the traffic problem, 8 
saving energy and reducing air pollution (6). Transit agencies have been increasing the use of electric 9 
buses in their operating fleet, but despite the environmental benefits and rapid growth of electric buses in 10 
the global market, the electricity mileage range and long charging time limit their wide adoption and 11 
make it challenging to plan electric bus operation and route assignment (7).Reliable and accurate 12 
estimation of electric bus energy consumption can facilitate electric bus operation and planning (8). 13 
However, energy consumption prediction of electric buses is challenging due to their complicated driving 14 
cycles and a wide range of factors that could influence energy consumption. Additionally, the format of 15 
models can vary depending on temporal granularity of prediction. 16 
State of the art review 17 

There is a school of literature on energy estimation models of electric vehicles, though limited 18 
studies focused on electric buses. In energy consumption models, the temporal granularity refers to time 19 
duration of energy prediction output. Existing energy prediction models can be classified as microscopic 20 
and macroscopic models based on time duration used for prediction. Micro models predict energy 21 
consumption of an electric vehicle at every second, thus normally necessitating sensing of vehicle driving 22 
parameters such as speed and acceleration at each second. Macroscopic models can explore the 23 
relationship between energy consumption and characteristics of driving at an aggregated spatial and/or 24 
temporal span. The prediction time duration can range from 5 minutes, to daily average. The 25 
methodologies of those electric vehicle energy consumption models can be classified into physics-based 26 
and data-driven. Physics-based models follow some fundamental physics laws and perform system 27 
identification to model the dynamics and interactions of various vehicle/powertrain components to 28 
estimate energy consumption. Data-driven models rely on the exploration of statistical relationships 29 
between inputs and energy outputs; thus, they can avoid understanding the physical process of vehicle 30 
dynamics and powertrain operation.  31 

Micro models can assess energy impacts of changes in vehicle dynamics at high frequency levels, 32 
thus, they are widely adopted in applications related to real-time optimal control of traffic involving 33 
electric vehicles. For example, studies on electric passenger vehicles include eco-driving to optimize 34 
electric vehicle trajectories for energy savings (9, 10); eco-routing to dynamically determine energy 35 
efficient routes (11, 12); integrated with traffic simulation for calculating energy consumption (13). These 36 
models are developed by either physical-based or data-driven methods. The independent variables are 37 
vehicle dynamics and components variables. Vehicle dynamics are factors that reflect the motion 38 
(including speed, acceleration, and tractive/brake torque) of a vehicle. The laws of physics govern the 39 
direct relationship between these factors and (kinetic) energy demanded by vehicles. Vehicle component 40 
parameters govern the operating states of key parts for propulsion (e.g., electric motors, mechanical 41 
transmissions), and energy flows within the energy storage and auxiliary subsystems, e.g. motor and 42 
transmission efficiencies, aerodynamic coefficients, etc. The most relevant study of micro model for 43 
electric bus is by Beckers et al. (14), who developed a physical-based energy consumption prediction 44 
model using data from one single real-world trip of one electric city bus. The physical-based model is 45 
derived based on principle of force and complemented by dedicated measurements to quantify parameters 46 
such as drag coefficients, tire rolling resistance, powertrain efficiencies, etc., for the specific electric bus. 47 
Although the model achieved high accuracy in discharging estimation, it failed in predicting regenerated 48 
energy because road grade was not considered as an input variable to the model. Additionally, since the 49 
validation data contains only one service trip of one bus, its application is limited. Similar physical-based 50 
powertrain models are created by other researchers, e.g. Halmeaho et al. (15), Brook et a. (16), etc. 51 
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Macro models can utilize aggregated traffic and vehicle information to estimate energy 1 
consumption of electric vehicle over a time span, thus they are adopted in applications in electric vehicle 2 
fleet management (17, 18), regional planning of charging infrastructure or electric vehicle adoption (19), 3 
etc. These macro models are based on data-driven methods, because it is impossible to apply fundamental 4 
physical laws and mimic energy flow over a period of time. There are several studies using macro models 5 
for electric bus energy prediction. Pamula et al (20) proposed a machine-learning macro model to predict 6 
energy consumption rate between stops of electric buses using a reduced number of bus trip parameters, 7 
such as trip duration, month of trip (as a proxy to weather), and elevation changes between stops. The 8 
validation with real-world data showed their model has a mean absolute percentage error compared with 9 
actual consumption rate at 7% for testing trips. Although the model approach is solid, the estimation does 10 
not consider traffic (i.e. transient driving conditions) between stops. In addition, the month index used to 11 
approximate the weather condition does not account for the weather variation within the month which is 12 
not captured in the model. Vepsalainen et al. (21) proposed a computationally efficient surrogate model to 13 
predict route-level average energy consumption rate for electric buses. The surrogate model is based on 14 
an electric bus energy simulation model and used to conduct sensitivity analysis to evaluate changes in 15 
energy consumption rate due to variations in vehicle attributes (e.g. battery resistance, auxiliary power, 16 
mass) and environment parameters (e.g. ambient temperature, headwind). But the surrogate model is not 17 
based on real-world driving data and road grade is not considered in the model. Additionally, the route-18 
level energy prediction is specific to the given origin and destination pair and less useful in evaluating 19 
alternative routes. 20 
Contribution of the work 21 

Energy prediction for electric buses is challenging because of diversified driving cycles of transit 22 
services. Above literature review shows limited studies on energy consumption of electric buses. The 23 
limited micro models are mainly built on physics-based approaches, which require efforts in validations 24 
of vehicle attribute parameters. The limited macro models have constraints either on omitting important 25 
influencing variables or developing models without validation with real-world data. In this study, we 26 
propose to establish a data-partition based artificial neural network energy prediction model for electric 27 
bus at microscopic level and link level. The data partitioning is applied to separate data into charging and 28 
discharging mode and then develop prediction models for each mode. This approach has proven to 29 
improve prediction performance because the energy rate at charging and discharging are influenced by 30 
different factors and have different features. We utilize a long-term real-world measurement dataset with 31 
diversified topological and meteorological features. The models can be used to assess real-time energy 32 
consumption of electric vehicles and evaluate energy benefits of vehicle control strategies at 1Hz 33 
frequency and at every road link. The microscopic model first partitions 1Hz driving data based on 34 
instantaneous speed and acceleration and then develops neural network models to each of data component 35 
to maximize prediction performance. The link-level model is to predict average energy consumption rate 36 
based on traffic pattern parameters deriving from second-by-second vehicle trajectories. The link-level 37 
model can leverage detailed trajectory data to achieve high accuracy and to guide energy-oriented transit 38 
operations and route planning. 39 
DATA PREPATION 40 
Vehicle specifications and Data collection 41 

The on-board driving and energy consumption measurement has been recorded since July 2018 42 
and is an on-going effort. The data are collected from three battery-powered electric buses operated by 43 
Chattanooga Area Regional Transportation Authority (CARTA) in Chattanooga, Tennessee. On-board 44 
measurement equipment is deployed on the studied electric buses to collect driving, monitoring and 45 
maintenance data of vehicles and the data are uploaded to a cloud in a real-time manner that can be used 46 
to analyze the status of the fleet. A summary of the electric bus configuration is presented in Table 1. The 47 
buses are BYD K9S, which are manufactured by one of the largest electric vehicles manufacturers in the 48 
world, BYD Auto Co., Ltd. 49 
TABLE 1 Summary of sampled transit buses and specifications 50 

Characteristic Value 



Yunteng Zhang, Yuche Chen, Ruixiao Sun, Abhishek Dubey, and Philip Pugliese  
 

5 
 

Seat Capacity 31 seats 
Model year 2016 
Measurements (L/W/H) 12/2.5/3.2 meters 
Acceleration (0-50 kph) 20 seconds 
Top speed 96 kph 
Range fully charged 250 km 
Gross weight  18,000 kg 
Max power output 180 kW 
Peak torque to wheels 1,100 Nm 
Drive batteries Li-Ion batteries 
Battery Size 350 kWh 

 1 
The collected data include data about real-time GPS locations (i.e. latitude, longitude), vehicle 2 

activities (instantaneous speed, acceleration and RPM), energy related parameters (i.e. energy 3 
consumption rate, state of charge) and meteorology data (ambient temperature and humidity). The data is 4 
retrieved at 1Hz frequency and can be synchronized with existing network performance index and 5 
elevation. The transit buses are running at pre-defined bus routes in Chattanooga metropolitan region, as 6 
shown in Figure 1 (left). The routes represent typical mountainous terrain patterns in the region, which is 7 
surrounded by Tennessee River and ridge-and-valley Appalachians.  The driving cycles of transits 8 
running on those routes are shown in Figure 1 (right). The driving cycles have a speed up to 60~80 9 
kilometer per hour (kph) and acceleration range -2 and 2 kph per second. This is comparable to the widely 10 
used transit cycle in research, orange county transit cycle, which has a maximum speed of 60 kph and 11 
acceleration range -1.3 to 1.4 kph per second. 12 

  13 
Figure 1 Route of transit bus in Chattanooga area (left) and driving cycles of buses (right) 14 
 15 
Data infusion 16 

Figure 2 illustrates the process of the data preparation. We first perform outlier detection on the 17 
raw data which will eliminate records with extreme and unlike values. The GPS-based longitude and 18 
latitude information is map-matched with a digital three-dimensional map to obtain elevation and road 19 
grade information for each record. Location and temporal specific humidity and temperature information 20 
is also obtained. All of the above information is merged into a single dataset that contains electric bus 21 
driving, operating as well as environment data.  22 
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 1 
 2 

Figure 2 Flowchart of Electric Bus Driving, Operating and Environment Data Infusion 3 
 4 

We represent distributions of humidity, temperature and road grade in Figure 3. The distributions 5 
show that the dataset covers a wide range of humidity, temperature and road grade. The road grade ranges 6 
between -10% and 10%, which represents the mountainous terrain characteristics of the Chattanooga 7 
region. 8 

 9 
Figure 3 Distributions of temperature, humidity and road grade for the electric buses 10 
 11 
Vehicle activity and energy consumption 12 

The recorded 1 Hz data for vehicle speed (v), acceleration (a), road grade (grade) were combined 13 
to quantify instantaneous vehicle specific power (VSP) defined by Jimenez-Palacios (22). VSP is a proxy 14 
to instantaneous vehicle power demand and used in relevant studies to investigate impacts of power on 15 
vehicle energy consumption and emission (23, 24). The formulation is 𝑉𝑆𝑃! = 𝑣!(1.1𝑎! + 9.81𝑔! +16 
0.132) + 3.02 × 10"#(𝑣!)$, with 𝑣!	(meter/second), 𝑎! (meter/second2) and g (%) as instantaneous 17 
speed, acceleration and road grade. The unit for VSP is kW per ton. Figure 4 shows average fuel 18 
consumption (unit: kWh/second) and 95 percentage confidence intervals as a function of VSP.  The 19 
results show a positive relationship between VSP and fuel consumption rate. The figure is our first 20 
attempt to understand energy consumption behavior of electric bus under different driving conditions. 21 
Although we observe a positive relationship between VSP and energy consumption rate, there are 22 
variations as well. Therefore, we should not rely on one single variable to estimate energy consumption 23 
rate of electric buses, but rather to leverage available data sources in this experiment to develop a 24 
comprehensive energy consumption model.  25 
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 1 
Figure 1 Mean and 95% confidence interval of Instantaneous power rate (kW) as a function of 2 
vehicle specific power 3 

 4 
METHODOLOGY 5 
Power flows within the electric bus 6 

The total energy consumption from a power source of a vehicle can be divided into energy used 7 
for overcoming changes in kinetic energy in vehicle’s motion (𝐸%), changes potential energy due to 8 
gravity (𝐸&), rolling resistance at tire (𝐸'), aerodynamic resistance of vehicle body (𝐸)), loss (internal 9 
energy loss) (𝐸*), and auxiliary consumption (e.g. A/C and all other accessories) 𝐸). Thus, the required 10 
power during a time interval ∆𝑡 (e.g. 1 second) 𝑃! is calculated as 11 

𝑃! =
𝐸% +	𝐸& + 𝐸' + 𝐸) + 𝐸* + 𝐸)

∆𝑡
																													12 

=		
𝐸% +	𝐸& + 𝐸' + 𝐸) + 𝐸* + 𝐸)

∆𝑡
																																																																										13 

= 𝑚 ∙ 𝑎 ∙ 𝑣 + 𝑚 ∙ 𝑣 ∙ 𝑔 ∙ 𝑠𝑖𝑛𝜑 +𝑚 ∙ 𝑣 ∙ 𝜓 +𝑚 ∙ 𝑣$ ∙ 𝜁 + 𝑃*+)14 
= 𝑚 ∙ 𝑣 ∙ (𝑎 + 𝑔 ∙ 𝑠𝑖𝑛𝜑 + 	𝜓	 + 𝑣, ∙ 𝜁	) + 𝑃*+) 15 

where a is vehicle acceleration during ∆𝑡, v is average speed during ∆𝑡, g is gravity constant, 	16 
𝜑 is road grade, 𝜓 is rolling resistance coefficient constant, and 𝜁 is aerodynamic drag coefficient 17 
constant. Equations above show that instantaneous power 𝑃! can be expressed as a function 𝑃! =18 
𝑓(𝑎, 𝑣, 𝜑). In the above function, the instantaneous power can be negative when instantaneous 19 
acceleration a is negative, which is referred as regenerative braking. Under this driving condition, the 20 
battery is in charging energy status. This creates a challenge in energy estimation because the efficiency 21 
of charging, specified as regenerative factor 𝜂, is not a fixed value and often influenced by the operating 22 
status of the vehicle. This challenge leads to partition data based on power charging and discharging, as 23 
well as driving status.  24 
Data partition 25 

Electric buses have two powertrain systems, the motor system is responsible to convert energy 26 
stored in the battery into kinetic energy for propelling the vehicle, and an active inverter system 27 
responsible for recovering the kinetic energy when vehicle brakes. We first divide data into accelerating 28 
(acceleration > 0 kilometer per hour per second, kph/s) and non-accelerating (otherwise) driving 29 
conditions. The energy recovering in non-accelerating status is challenging to predict because it depends 30 
on the recoverable kinetic energy and regenerative factor 𝜂, i.e. percentage of available energy that are 31 
recovered. Through experiments under real-world driving conditions, Yang et al. (25) demonstrated that 32 
regenerative factor 𝜂 is piecewise linearly related with vehicle speed with much higher 𝜂 associated with 33 
vehicle speed below 18 kph (i.e. 5 m/s) and lower 𝜂 with speed greater than 18 kph. 34 

 35 
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   1 
Figure 5 Distribution of ECR (left); Different colors indicating accelerating or non-accelerating 2 
(right). The speed threshold of 5 m/s is equivalent to 18 kph. 3 

We plot distributions of energy consumption based on driving status in Figure 5 (left). It shows 4 
that buses are accelerating, their batteries are in discharging mode for majority of time, which is as 5 
expected because the vehicle need power from the battery for propulsion. In non-accelerating driving, 6 
their batteries can be either charging or discharging modes but mainly in regenerative brake charging. In 7 
Figure 5 (right), we present distributions of energy consumption for non-accelerating data by 8 
discriminating with 18 kph (5 m/s) instantaneous speed threshold. We observe a pattern in the 9 
distributions, with charging rate falling in -100 to 0 kW driving with speed less than 18 kph, and rate of -10 
200 to -100kW mainly for driving with speed higher than 18 kph. This piecewise pattern matched the 11 
relation between regenerative braking force and vehicle speed in literature.  12 

 13 
Artificial Neural Networks Development for Microscopic Instantaneous Energy Consumption 14 
Prediction 15 

With the analytical model presented in section 3.1, where the vehicle mass, rolling resistance 16 
coefficient, and drag coefficient are relatively constant and can be regarded as constants, we examine the 17 
functions approximated using artificial neural networks (ANN) training process to estimate instantaneous 18 
ECRs. ANNs are information processing systems that mimic how the human brain processes information 19 
(26). In ANNs, data processing components are called neurons, and neurons form a hierarchical structure 20 
consisting of input, hidden, and output layers. One neuron in a layer is a complex nonlinear combination 21 
of all neurons from the previous layer through coefficients and activation functions. Therefore, ANNs 22 
models can explore a wide range of nonlinear relationship between input variables and vehicle emissions 23 
rates. We select the variables listed in Table 2 as the features used in ANN model. 24 
TABLE 2 Description of Input Variables for Microscopic Energy Consumption Model 25 

Symbols Descriptions 
𝑡 The index of second 
𝑣! The instantaneous speed at second t (kilometer / hour) 
𝑎! The instantaneous acceleration at second t (kilometer / hour / second) 
𝑑! The instantaneous engine speed at second t (round / min) 
𝑤! The ambient temperature at second t (Celsius degree) 
𝑞! The ambient humidity at second t (%) 
𝑔! The road grade at second t (%) 
𝑉𝑆𝑃! The instantaneous vehicle specific power at second t (kW/ton) 
We partition the 2019 data (March and June 2019 data) into three subsets, i.e. accelerating 26 

driving, non-accelerating driving with speed threshold of 18 kph. Then, we randomly divided each subset 27 
into training and testing dataset to determine the optimal ANN model setup (neurons, hidden layer, 28 
activation function). We adopt the k-fold cross-validation method to prevent model over-fitting. This is a 29 

Speed > 5 m/s Speed < 5 m/s
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sampling procedure where the dataset is randomly divided into K subsets of equal size. With the same 1 
neural network model setup, we conduct K training iterations. At each training iteration k, the kth subset 2 
will be used as the testing dataset, and the remaining K-1 fold subsets will be combined to serve as the 3 
training set. Prediction performance for the kth training iteration will be recorded. After completing K 4 
training iterations, the prediction performance for the specific model setup (number of neurons, hidden 5 
layer, activation function) will be obtained by averaging performance from the k training iterations. 6 
Neural network models with different setup will be compared based on their average prediction 7 
performance to identify the best performed model setup. We chose 5 as the training iteration K as 8 
suggested by literature(27). We chose mean absolute percentage error (MAPE) and coefficient of 9 
determination (R2) as the prediction performance metrics to compare neural network setups. Before 10 
applying ANN models, it is a common practice to normalize input and output data to speed up learning 11 
and lead to faster convergence in neural network solution algorithms. For an input variable 12 
	 -!"./0	(-)
.34(-)"./0	(-)

, we normalize the ith record xi as	 -!"./0	(-)
.34(-)"./0	(-)

 , where min(x) and max(x) correspond to 13 

the minimum and maximum values of that variable of all records. The normalized data is then be 14 
randomly divided into training and test datasets for neural network model development.  15 

We adopt Mean Absolute Scaled Error (MASE) as a measure of forecast accuracy to compare the 16 
performance of the energy consumption rate estimation model. Although the Mean Absolute Percentage 17 
Error (MAPE) is easier to interpret, it is not suitable for sample data where values of dependent variable 18 
are largely zero or close to zero. Hyndaman and Koehlers (28) proposed the MASE to serve as a generally 19 
applicable forecast error measurement that is independent of the scale of data and has better predictable 20 
behavior when dependent variable is close to zero. MASE is calculated as following: 𝑀𝐴𝑆𝐸 =21 

	5
6
∑ H |8""	89"|

#
$%#

∑ |8!"	89!%#|$
!&'

I6
;<5 ,where 𝑃 is observed energy consumption rate,  𝑃J is the estimated energy 22 

consumption rate, and 𝑛 is the total number of observations in the testing dataset. 23 
 24 

Artificial Neural Networks Development for Link-based Energy Consumption  25 
The microscopic model requires instantaneous driving data, which are obtained either through 26 

large-scale vehicle monitoring program or simulation. But these methods are either costly or time-27 
consuming to setup. Current technologies allow real-time acquisition of the average traffic speed of each 28 
link in a road network, and this average speed can be regarded as an equivalent approximate of the 29 
average speed of the vehicle when passing the link. In this study, we develop another neural network that 30 
uses aggregated traffic information to predict link-based energy consumption of electric buses.  31 

To prepare training and testing data, we aggregated the time-sequenced vehicle driving data based 32 
on links and use them as the features in the ANN model (shown in Table 3). We adopt a similar 33 
procedure to normalize data and cross-validate data as discussed in microscopic model.  34 
TABLE 3 Description of Input Variables for Link-based Energy Consumption Model 35 

Symbols Descriptions 
𝑣* The average speed of the vehicle passing through link l (kilometer / 

hour) 
𝑤* The average ambient temperature of the vehicle through link l (Celsius 

degree) 
𝑞* The average humidity of a vehicle through link l (%) 
𝑔* The net road grade of the vehicle passing through link l (%) 
𝑣*, The squared link average vehicle speed on link l 
𝑣*$ The cubic link average vehicle speed on link l 
 36 
In neural network model development, one model setup is a combination of decisions on 1) which 37 

independent variables to include, 2) number of hidden layers and neurons in each layer, 3) format of 38 
activation function. The number of neurons in hidden layers are generally determined by using a trial and 39 



Yunteng Zhang, Yuche Chen, Ruixiao Sun, Abhishek Dubey, and Philip Pugliese  
 

10 
 

error method (29), but one commonly used guideline in determining upper limit for neuron in hidden 1 
layers 𝑁= is 	𝑁= ≤ 2𝑁> + 1, with 𝑁> to be number of independent variables. Activation function is 2 
responsible for transforming the set of neurons in one layer into a given neuron or output in the next layer. 3 
Most neural network models use nonlinear activation functions for the neuron in hidden layers to allow 4 
the model to learn complex structures in the data. Commonly seen nonlinear functions include sigmoid 5 
5

5+?%(
, tangent ,

5+?%'(
− 1 and rectifier 𝑚𝑎𝑥(0, 𝑥) are tested in this study.  6 

 7 
RESULTS AND DISCUSSION 8 

We conduct model selection process and present the optimal model configurations and prediction 9 
performance metrics for the ANN models for link-based model and microscopic models based on data 10 
collected in year 2019 (Table 4). For microscopic models, the acceleration sub-model has a better R2 and 11 
MASE results compared with the non-acceleration sub-models, followed by the link-based model.  12 

 13 
TABLE 4 Optimal Model Configuration and Performance Metric 14 

 Layers # of Neurons Performance 
                   Layer 1 Layer 2 R2 MASE 

Micro Model 
Acc. 2 8 3 0.70 0.33 

Non-Acc  v<18 kph 2 8 4 0.62 0.37 
Non-Acc  v>18 kph 2 9 4 0.65 0.37 

Link-based model  2 6 3 0.61 0.40 
 15 

We test predictions of electricity consumption and evaluate its prediction accuracy at different 16 
driving conditions and trip durations. Figure 6(left) presents absolute percentage errors of microscopic 17 
energy consumption as a function of vehicle specific power (VSP). The bar within each box corresponds 18 
to the mean absolute percentage error and the two sides of a box show the 1st and 3rd quantiles of the 19 
errors. The results show that errors of microscopic model reduce as VSP increases. The error does not 20 
change when VSP is greater than 15 kW/ton. High VSP (particularly larger than 15 kW/ton) corresponds 21 
to driving at high acceleration and climbing high hill, whose driving conditions are homogenous. Low 22 
VSP corresponds to more diversified driving conditions, such as high speed with low/negative 23 
acceleration, low speed with low/moderate acceleration etc. Therefore, our results verify that energy 24 
prediction contains more noise under diversified driving conditions.   25 

   26 
Figure 6 (left) Boxplot of absolute percentage error (%) for microscopic energy consumption as a 27 
function of vehicle specific power. The bar corresponds to median and two sides of box are 1st and 28 
3rd quartiles. The circle within each box represents mean.  29 
Figure 6 (right) Mean and 95% confidence interval of absolute percentage errors of microscopic 30 
energy prediction at different trip duration. 31 
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We aggregate predicted electricity consumption rate of microscopic model over different trip 1 
durations (10 to 60 minutes) and assess prediction errors against actual energy consumption in Figure 6 2 
(right). The mean absolute percentage error (MAPE) reduces from 10% in 10-minute trip to 8% in 60-3 
minute trip. But the rate of reduction diminishes as duration increases and does not change significantly 4 
for trips with 40 minutes or more.  5 

We apply the ANN micro model developed using 2019 data to a dataset collected in March 2020. 6 
The purpose is to validate the model and test overfitting possibility when it is applied outside of the 7 
original training and testing dataset. In Figure 7, we compare the absolute percentage error for 8 
predictions of the artificial neural network model and non-neural network linear regression model as a 9 
function of trip duration and vehicle specific power using 2019 (original training data) and 2020 10 
(validation data) dataset. The results show that the mean absolute percentage errors and confidence 11 
intervals of artificial neural network model are consistently lower than those of linear regress model using 12 
either the original training data collected in 2019 or validation data collected in 2020. Though, the 13 
differences seem to diminish as trip duration increase in all cases.   14 

Using the original training data collected in 2019, MAPE of ANN model is reduced from 10% to 15 
8% while from 15% to 12% for linear regression model when trip duration increases from 5 minutes to 60 16 
minutes. This is expected as shorter trip duration normally constitute more dynamic traffic and driving 17 
conditions thus neural network model can better capture changes in fuel consumption using complex 18 
model formats. When the trained model is applied data in year 2020, we observe that the MAPEs are 19 
higher than those using original training data for all trip durations. This shows possible overfitting 20 
characteristics of both neural network and linear regression model. The overfitting occurs when our 21 
models learn the detail and noise specific to the training data collected in 2019, which leads to higher 22 
prediction error when new data (2020 data) are applied to the models. However, it is promising to see that 23 
ANN models outperform linear regression when it comes to increase of error due to overfitting. This 24 
demonstrates ANN model’s capability in capturing non-linearities and complex relationship, which help 25 
reduce overfitting impacts at new data. When discriminating by VSP, neural network model outperforms 26 
linear regression model in all of the VSP bins for the origin training data collected in 2019. The 27 
improvements in prediction error are significant in low VSP areas (VSP < 3 kW/ton) for neural network 28 
model. When the developed model is applied to new data collected in 2020, we also observed increasing 29 
errors due to overfitting to the training data. But we observe the overfitting impacts are much less on 30 
ANN models than in linear regression, which is similar to the observation when prediction errors are 31 
accumulated at different trip duration levels.    32 

     33 
Figure 7 Mean absolute percentage error and 95 percentage confidence intervals for predictions of 34 
artificial neural network (ANN) model and linear regression model with the same independent 35 
variables as a function of trip duration (left) and vehicle specific power (right). 36 

The link-based model predicts average energy consumption rate (kWh/km) of electric bus at each 37 
road link based on traffic patterns and road environment on that specific link. Most of the links are 38 
between 1 and 5 miles with trip duration below 10 minutes. To better understand the model performance 39 
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under the impact of factors including traffic flow speed, ambient temperature and road grade, we present 1 
boxplot of link-based model errors with respect to these factors (Figure 8). We notice that for the traffic 2 
average speed range of 40-80 kph, the prediction error is slightly higher than other speed ranges. Trips 3 
with average speed ranging 40-80 kph can have a diversified driving with a mix of high speed, low speed 4 
driving and transient conditions. This increases complexity in energy prediction because the model has to 5 
be sensitive to changes of traffic patterns and capable of capture transient conditions in estimation. Figure 6 
8 shows the ambient temperature of transit operation clusters around 10 and 25 Celsius, which correspond 7 
to morning/evening and middle day temperature. By discriminating trips based on temperature at these 8 
two categories, we do not observe significant differences in prediction error distributions. This 9 
demonstrates our energy prediction model’s capability to capture impacts of temperature on energy 10 
consumption which results in similar prediction error distribution of the two temperature categories. 11 
When link-based predictions are differentiated by road grade, links with flat or small hills generate the 12 
lowest prediction error followed by downhill and then uphill driving.   13 

 14 
Figure 8 Boxplot of absolute percentage error (%) for link-based energy consumption 15 
discriminating by trip average speed, temperature and road grade. The bar corresponds to median 16 
and two sides of box are 1st and 3rd quartiles.  17 
 18 
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